class: center, middle, inverse, title-slide # Genomic best linear unbiased prediction ## Linear Mixed Model Workshop
@UFV
### Gota Morota
http://morotalab.org/
Alencar Xavier
http://alenxav.wixsite.com/home
### 2018/10/26 --- class: inverse, center, middle # Quantitative Genetics -- Analysis of complex or multifactorial traits -- All genes affect all traits - the question is by how much? -- Infinitesimal model -- Oligogenic model --- # What is quantitative genetics? -- Population genetics - **Mathematics** is language of population genetics, **population genetics** is language of **evolution**. -- Quantitative genetics - **Statistics** is language of quantitative genetics, **quantitative genetics** is language of **complex trait genetics**. -- **Phenotypes** first in quantitative genetics In the era of genomics, phenotype is **king** --- # Prediction vs. Inference Complex traits are controlled by large number of genes with small effects, and influenced by both genetics and environments - Inference (location) - average effects of allele substitution - Inference (variability) - variance component estimation - genomic heritability Combination of above two (e.g., estimate proportion of additive genetic variance explained by QTLs) - Prediction - genomic selection - prediction of yet-to-be observed phenotypes --- # Prediction vs. Inference <div align="center"> <img src="Lo2015PNAS.png" width=900 height=400> </div> * [http://www.pnas.org/content/112/45/13892.abstract ](http://www.pnas.org/content/112/45/13892.abstract ) --- # How to parameterize response variable y? - Prediction of additive genetic effects - `\(\mathbf{ y = E + a + \boldsymbol{\epsilon}}\)` - Prediction of total genetic effects **parametrically** - `\(\mathbf{ y = \mathbf{E} + \underbrace{\mathbf{ a + d + a*a + a*d + d*d}}_{g} + } \boldsymbol{\epsilon}\)` - Prediction of total genetic effects **non-parametrically** - `\(\mathbf{ y = \mathbf{E} + \mathbf{g} + \boldsymbol{\epsilon}}\)` --- # Phenotypes ![](plant_01.png) ![](plant_02.jpg) .center[Image data] --- # Genomic information (e.g., SNPs) ![](SNPs.png) .center[Repeat of numbers 0, 1, and 2] --- # Quantitative genetics Connecting image data with genomic information <center> <div> <img src="plant_01.png" width=100 height=100> = <img src="SNPs.png" width=100 height=100> + error </div> </center> This is equivalent to `\begin{align*} \mathbf{y} &= \mathbf{W}\mathbf{a} + \boldsymbol{\epsilon} \\ \underbrace{\begin{bmatrix} y_1\\ y_2\\ \vdots \\ y_n\end{bmatrix}}_{n \times 1} &= \underbrace{\begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1m} \\ w_{21} & w_{22} & \cdots & w_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n1} & w_{n2} & \cdots & w_{nm} \end{bmatrix}}_{n \times m} \quad \underbrace{\begin{bmatrix} a_1\\ a_2\\ \vdots \\ a_m\end{bmatrix}}_{m \times 1} +\underbrace{\begin{bmatrix} \epsilon_1\\ \epsilon_2\\ \vdots \\ \epsilon_m\end{bmatrix}}_{n \times 1} \end{align*}` where `\(n\)` is the number of individuals (e.g., accessions) and `\(m\)` is the number of SNPs. --- # Genetic values Quantitative genetic model: `\begin{align*} \mathbf{y} &= \mathbf{g} + \boldsymbol{\epsilon} \\ \end{align*}` where `\(\mathbf{y}\)` is the vector of observed phenotypes, `\(\mathbf{g}\)` is the vector of genetic values, and `\(\boldsymbol{\epsilon}\)` is the vector of residuals. Example: | Plant ID | y | g | e | | ------------- |:-------------:| -----:|------| | 1 | 10 | ? | ? | | 2 | 7 | ? | ? | | 3 | 12 | ? | ? | --- # Genetic values Quantitative genetic model: `\begin{align*} \mathbf{y} &= \mathbf{g} + \boldsymbol{\epsilon} \\ \end{align*}` where `\(\mathbf{y}\)` is the vector of observed phenotypes, `\(\mathbf{g}\)` is the vector of genetic values, and `\(\boldsymbol{\epsilon}\)` is the vector of residuals. Example: | Plant ID | y | g | e | | ------------- |:-------------:| -----:|------| | 1 | 10 | 5 | 5 | | 2 | 7 | 6 | 1 | | 3 | 12 | 2 | 10 | -- We approximate unknown `\(\mathbf{g}\)` with `\(\mathbf{Wa}\)`. `\begin{align*} \mathbf{y} &= \mathbf{g} + \boldsymbol{\epsilon} \\ &\approx \mathbf{W}\mathbf{a} + \boldsymbol{\epsilon} \end{align*}` --- # Expectation and variance Define the random variable `\(W\)` which counts the number of reference allele `\(A\)`. `\begin{align*} W &= \begin{cases} 2 & \text{if } AA \text{ with frequency } p^2 \\ 1 & \text{if } Aa \text{ with frequency } 2p(1-p) \\ 0 & \text{if } aa \text{ with frequency } (1-p)^2 \end{cases} \\ \end{align*}` where `\(p\)` is the allele frequency of `\(A\)`. -- Then, `\begin{align*} E[W] &= 0 \times (1 - p_j)^2 + 1 \times [2p(1-p)] + 2 \times p^2 \\ &= 2p \\ E[W^2] &= 0^2 \times (1 - p_j)^2 + 1^2 \times [2p(1-p)] + 2^2 \times p^2 \\ &= 2p(1-p) + 4p^2 \\ \end{align*}` Thus, the variance of allelic counts is `\begin{align*} Var(W) &= E[W^2] - E[W]^2 \\ &= 2p(1-p) + 4p^2 - 4p^2\\ &= 2p(1-p) \end{align*}` --- # Alternative coding Define the random variable `\(W\)` which counts the number of reference allele `\(A\)`. `\begin{align*} W &= \begin{cases} 1 & \text{if } AA \text{ with frequency } p^2 \\ 0 & \text{if } Aa \text{ with frequency } 2p(1-p) \\ -1 & \text{if } aa \text{ with frequency } (1-p)^2 \end{cases} \\ \end{align*}` where `\(p\)` is the allele frequency of `\(A\)`. -- Then, `\begin{align*} E[W] &= -1 \times (1 - p_j)^2 + 0 \times [2p(1-p)] + 1 \times p^2 \\ &= −(1 − 2p + p^2) + p^2 = 2p-1 \\ E[W^2] &= (-1)^2 \times (1 - p_j)^2 + 0^2 \times [2p(1-p)] + 1^2 \times p^2 \\ &= 1 − 2p + p^2 +p^2 = 2p^2 − 2p + 1 \\ \end{align*}` Thus, the variance of allelic counts is `\begin{align*} Var(W) &= E[W^2] - E[W]^2 \\ &= 2p^2 − 2p + 1 − (4p^2 − 4p + 1)\\ &= -2p^2 + 2p = 2p(1-p) \end{align*}` --- # Centered marker codes `\begin{align*} W - E(W) &= \begin{cases} 2 -2p & \text{if } AA \text{ with frequency } p^2 \\ 1 - 2p & \text{if } Aa \text{ with frequency } 2p(1-p) \\ 0 - 2p & \text{if } aa \text{ with frequency } (1-p)^2 \end{cases} \\ \end{align*}` `\begin{align*} W - E(W) &= \begin{cases} 1 - (2p-1) = 2 -2p& \text{if } AA \text{ with frequency } p^2 \\ 0 - (2p-1) = 1 - 2p & \text{if } Aa \text{ with frequency } 2p(1-p) \\ -1 - (2p-1) = 0 - 2p & \text{if } aa \text{ with frequency } (1-p)^2 \end{cases} \\ \end{align*}` where `\(p\)` is the allele frequency of `\(A\)`. Therefore, the variance and the centered codes are the same. --- # Genomic relationship matrix (1) Recall that `\begin{align*} \mathbf{y} &= \mathbf{g} + \boldsymbol{\epsilon} = \mathbf{W}_c\mathbf{a} + \boldsymbol{\epsilon} \end{align*}` Assume genetic value is parameterized as `\(g_{i} = \sum w_{ij} a_j\)` where both `\(w\)` and `\(a\)` are treated as random and independent. Assuming linkage equilibrium of markers (all loci are mutually independent) `\begin{align*} \sigma^2_g &= \sum_j 2 p_j(1-p_j) \cdot \sigma^2_{a_j}. \notag \\ \end{align*}` Under the homogeneous marker variance assumption `\begin{align} \sigma^2_{a} &= \frac{\sigma^2_g}{2 \sum_j p_j(1-p_j) }. \end{align}` Then, variance of genetic values is `\begin{align*} Var(\mathbf{g}) &= Var(\mathbf{W}_c\mathbf{a}) = \mathbf{W_cW'_c}\sigma^2_{a} \\ &= \frac{\mathbf{W_cW'_c}}{2 \sum_j p_j(1-p_j)} \sigma^2_g = \mathbf{G}\sigma^2_g \end{align*}` --- # Genomic relationship matrix (2) Similarly, `\begin{align*} \sigma^2_g &= \sum^m_{j=1} 2p_{j}(1 - p_j)\sigma^2_{a} \\ &= m \sigma^2_{a} \end{align*}` - homogeneous marker variance assumption - if assumed that all markers have variance 1 (following standardizing marker genotypes) - the marked genetic variance is given by the sum of individual marker variances `\begin{align*} \sigma^2_{a} = \sigma^2_g / m \end{align*}` Then, variance of genetic values is `\begin{align*} Var(\mathbf{g}) &= Var(\mathbf{W}_{cs}\mathbf{a}) = \mathbf{W_{cs}W'_{cs}}\sigma^2_{a} \\ &= \frac{\mathbf{W_{cs}W'_{cs}}}{m} \sigma^2_g = \mathbf{G}\sigma^2_g \end{align*}` --- # GWAS vs. Prediction ![](https://upload.wikimedia.org/wikipedia/commons/1/12/Manhattan_Plot.png) .right[[Wikimedia Commons](https://commons.wikimedia.org/wiki/File:Manhattan_Plot.png)] --- # Missing heritability ![](https://www.nature.com/news/2008/081105/images/Heritability.jpg) .right[[doi:10.1038/456018a](https://www.nature.com/news/2008/081105/full/456018a.html)] - Variance explained by genome-wide significant SNPs (GWAS heritability) - Variance explained by all SNPs on the DNA microarray chip (genomic heritability) - Variance explained by pedigree (trait heritability) --- # Variance explained <div align="center"> <img src="missh2.png" width=700 height=400> </div> GWAS heritability `\(<\)` genomic heritability `\(\leq\)` trait heritability --- # Genomic prediction - use all available markers ![](mhg2001.png) .center[[Meuwissen et al. (2001)](http://www.genetics.org/content/157/4/1819)] .pull-left[ - Genomic selection - Genome-enabled selection - Genome-assisted selection - Genomic prediction - Genome-enabled prediction - Genome-assisted prediction ] .pull-right[ - generation interval - prediction performance ] --- # Genomic selection vs. Marker assisted selection <div align="center"> <img src="nakayaIsobe.png" width=600 height=400><p><a href="https://academic.oup.com/aob/article/110/6/1303/110713"> Nakaya and Isobe (2012)</a> </div> --- # How to fit all SNPs simultaneously? [Curse of dimensionality](https://en.wikipedia.org/wiki/Curse_of_dimensionality) * add a penalty function to OLS (e.g., ridge regression and LASSO) * treat SNPs as random effects (BLUP) * become a Bayesian --- class: inverse, center, middle # GBLUP --- # Genomic best linear unbiased prediction Suppose underlying signal is given by $$ \mathbf{y} = \mathbf{g} + \boldsymbol{\epsilon} $$ We approximate the vector of genetic values `\(\mathbf{g}\)` with a linear function $$ \mathbf{y} = \mathbf{W}\mathbf{a} + \boldsymbol{\epsilon} $$ - `\(\mathbf{W}\)` is the centered `\(n\)` `\(\times\)` `\(m\)` matrix of additive marker genotypes - `\(\mathbf{a}\)` is the vector of regression coefficients on marker genotypes - `\(\boldsymbol{\epsilon}\)` is the residual --- # Genomic best linear unbiased prediction Variance-covariance matrix of `\(\mathbf{y}\)` is `\begin{align*} \mathbf{V}_y &= \mathbf{V}_g + \mathbf{V}_{\epsilon} \\ &= \mathbf{WW'}\sigma^2_{a} + \mathbf{I} \sigma^2_{\epsilon} \end{align*}` - `\(\mathbf{a} \sim N(0, \mathbf{I}\sigma^2_{\mathbf{a}})\)` - `\(\boldsymbol{\epsilon} \sim N(0, \mathbf{I}\sigma^2_{\boldsymbol{\epsilon}})\)` - `\(\mathbf{V}_g = \mathbf{WW'}\sigma^2_{a}\)` is the covariance matrix due to markers --- # Genomic best linear unbiased prediction If normality is assumed, the best linear unbiased prediction (BLUP) of `\(\mathbf{g}\)` `\((\hat{\mathbf{g}})\)` is the conditional mean of `\(\mathbf{g}\)` given the data `\begin{align} BLUP(\hat{\mathbf{g}}) &= E(\mathbf{g}|\mathbf{y}) = E[\mathbf{g}] + Cov(\mathbf{g}, \mathbf{y}^T) Var(\mathbf{y})^{-1} [\mathbf{y} - E(\mathbf{y})] \notag \\ &= Cov(\mathbf{W}\mathbf{a}, \mathbf{y}^T)\cdot \mathbf{V}_y^{-1} \mathbf{y} \notag \\ &= \mathbf{WW'}\sigma^2_{\mathbf{a}} [\mathbf{WW'}\sigma^2_{a} + \mathbf{I} \sigma^2_{\epsilon}]^{-1} \mathbf{y} \notag \\ &= [\mathbf{I} + \frac{\sigma^2_{\epsilon}}{\mathbf{WW'}\sigma^2_{a}} ]^{-1} \mathbf{y} \\ &= [\mathbf{I} + (\mathbf{WW'})^{-1} \frac{\sigma^2_{\epsilon}}{\sigma^2_{a}} ]^{-1} \mathbf{y}, \end{align}` assuming that `\(\mathbf{WW'}\)` is invertible - `\(Cov(\mathbf{W}) = \mathbf{WW'}\)` is a covariance matrix of marker genotypes (provided that `\(X\)` is centered), often considered to be the simplest form of additive genomic relationship kernel, `\(\mathbf{G}\)`. --- # Genomic best linear unbiased prediction We can refine this kernel `\(Cov(\mathbf{W}) = \mathbf{WW'}\)` by relating genetic variance `\(\sigma^2_g\)` and marker genetic variance `\(\sigma^2_{a}\)` under the following assumptions Assume genetic value is parameterized as `\(g_{i} = \sum w_{ij} a_j\)` where both `\(x\)` and `\(a\)` are treated as random and independent. Assuming linkage equilibrium of markers (all loci are mutually independent) `\begin{align*} \sigma^2_g &= \sum_j 2 p_j(1-p_j) \cdot \sigma^2_{a_j}. \notag \\ \end{align*}` Under the homogeneous marker variance assumption `\begin{align} \sigma^2_{a} &= \frac{\sigma^2_g}{2 \sum_j p_j(1-p_j) }. \end{align}` --- # Genomic best linear unbiased prediction Recall that `\begin{align} BLUP(\hat{\mathbf{g}}) &= [\mathbf{I} + (\mathbf{WW'})^{-1} \frac{\sigma^2_{\epsilon}}{\sigma^2_{a}} ]^{-1} \mathbf{y}, \end{align}` Replacing `\(\sigma^2_{\beta}\)` we get `\begin{align} BLUP(\hat{\mathbf{g}}) &= \left [\mathbf{I} + (\mathbf{WW'})^{-1} \frac{\sigma^2_{\epsilon}}{ \frac{ \sigma^2_{g}}{2 \sum_j p_j(1-p_j)}} \right ]^{-1} \mathbf{y} \notag \\ &= \left [\mathbf{I} + \mathbf{G}^{-1} \frac{\sigma^2_{\epsilon}}{ \sigma^2_g} \right ]^{-1} \mathbf{y} \end{align}` where `\(\mathbf{G} = \frac{\mathbf{WW'}}{2 \sum_j p_j(1-p_j)}\)` is known as the first `\(\mathbf{G}\)` matrix introduced in VanRaden (2008) --- # Genomic best linear unbiased prediction Similarly, `\begin{align} \sigma^2_g = \sum^m_{j=1} 2p_{j}(1 - p_j)\sigma^2_{a} = m \sigma^2_{a} \end{align}` - if it is assumed that all markers have variance 1 (following standardizing marker genotypes) - the marked genetic variance is given by the sum of individual marker variances $$ \sigma^2_{a} = \sigma^2_g / m $$ --- # Genomic best linear unbiased prediction Replacing `\(\sigma^2_{a}\)` we get `\begin{align} BLUP(\hat{\mathbf{g}}) &= \left [\mathbf{I} + (\mathbf{WW}^T)^{-1} \frac{\sigma^2_{\epsilon}}{ \frac{ \sigma^2_{g}}{m}} \right ]^{-1} \mathbf{y} \notag \\ &= \left [\mathbf{I} + \mathbf{G}^{-1} \frac{\sigma^2_{\epsilon}}{ \sigma^2_g} \right ]^{-1} \mathbf{y} \end{align}` where `\(\mathbf{G} = \frac{\mathbf{WW}^T }{m}\)` is known as the second `\(\mathbf{G}\)` matrix introduced in VanRaden (2008) --- # GBLUP from mixed model equations (MME) Suppose we have fixed effects and SNP covariates `\begin{align} \mathbf{y} &= \mathbf{Xb} + \mathbf{Zg} + \mathbf{e} \end{align}` where `\(\mathbf{g} \sim N(0, \mathbf{G}\sigma^2_u)\)` and `\(\mathbf{e} \sim N(0, \mathbf{I}\sigma^2_e)\)`. Then MME is `$$\begin{bmatrix} \mathbf{X'X} & \mathbf{X'Z} \\ \mathbf{Z'X} & \mathbf{Z'Z} + \mathbf{G}^{-1}\frac{\sigma^2_e}{\sigma^2_g} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{b}} \\ \hat{\mathbf{g}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{Z'y} \end{bmatrix}$$` --- # GBLUP from MME When there is no fixed effect, `\(\mathbf{y}\)` is centered, each individual has only one phenotype ( `\(\mathbf{Z = I}\)` ), the MME is `$$\begin{align} \left (\mathbf{Z'Z} + \mathbf{G}^{-1}\frac{\sigma^2_e}{\sigma^2_g} \right) \hat{\mathbf{g}} &= \mathbf{Z'y} \\ \left (\mathbf{I} + \mathbf{G}^{-1}\frac{\sigma^2_e}{\sigma^2_g} \right) \hat{\mathbf{g}} &= \mathbf{y} \\ \hat{\mathbf{g}} &= \left (\mathbf{I} + \mathbf{G}^{-1}\frac{\sigma^2_e}{\sigma^2_g} \right)^{-1} \mathbf{y} \end{align}$$` --- class: inverse, center, middle # RRBLUP --- ## BLUP of marker effects Suppose that the phenotype-genotype mapping function is `\begin{align*} \mathbf{y} &= \mathbf{g} + \boldsymbol{\epsilon} \\ \mathbf{y} &= \mathbf{W}\mathbf{a} + \boldsymbol{\epsilon} \\ \mathbf{a} &\sim N(0, \mathbf{I}\sigma^2_{a}) \end{align*}` The conditional expectation of `\(\mathbf{a}\)` given `\(\mathbf{y}\)` is `\begin{align*} BLUP(\mathbf{a}) &= E(\mathbf{a}| \mathbf{y})= Cov(\mathbf{a}, \mathbf{y})Var(\mathbf{y})^{-1} [\mathbf{y} - E(\mathbf{y})] \\ &= Cov(\mathbf{a}, \mathbf{W}\mathbf{a}) [\mathbf{W}\mathbf{W'} \sigma^2_{\mathbf{a}}+ \mathbf{I}\sigma^2_{\boldsymbol{\epsilon}}]^{-1} \mathbf{y} \\ &= \sigma^2_{\mathbf{a}} \mathbf{W}' [\mathbf{W}\mathbf{W'} \sigma^2_{\mathbf{a}} + \mathbf{I}\sigma^2_{\boldsymbol{\epsilon}}]^{-1} \mathbf{y} \\ &= \sigma^2_{\mathbf{a}} \mathbf{W'} (\mathbf{W}\mathbf{W'})^{-1} [ \sigma^2_{\mathbf{a}}\mathbf{I} + (\mathbf{W}\mathbf{W'})^{-1} \sigma^2_{\boldsymbol{\epsilon}}]^{-1} \mathbf{y} \\ &= \mathbf{W}^T (\mathbf{W}\mathbf{W'})^{-1} [ \mathbf{I} + (\mathbf{W}\mathbf{W'})^{-1} \frac{\sigma^2_{\boldsymbol{\epsilon}}}{\sigma^2_{\mathbf{a}}} ]^{-1} \mathbf{y}. \end{align*}` Alternatively, `\begin{align*} BLUP(\mathbf{a}) &= \mathbf{W}^T [ (\mathbf{W}\mathbf{W'}) + \frac{\sigma^2_{\boldsymbol{\epsilon}}}{\sigma^2_{\mathbf{a}}}\mathbf{I} ]^{-1} \mathbf{y}. \end{align*}` --- # BLUP of marker effects Thus, `\begin{align*} BLUP(\mathbf{a}) &= \mathbf{W}^T (\mathbf{W}\mathbf{W'})^{-1} [ \mathbf{I} + (\mathbf{W}\mathbf{W'})^{-1} \frac{\sigma^2_{\boldsymbol{\epsilon}}}{\sigma^2_{\mathbf{a}}} ]^{-1} \mathbf{y} \\ &= \mathbf{W'} (\mathbf{W}\mathbf{W'})^{-1} BLUP(\mathbf{g}). \end{align*}` Thus, once we obtain `\(\hat{\mathbf{g}}\)` from GBLUP, BLUP of marker coefficients is given by `\(\hat{\mathbf{a}} = \mathbf{W'} (\mathbf{W}\mathbf{W'})^{-1} \hat{\mathbf{g}}\)` --- # How to evaluate prediction performance Cross-validation - take model uncertainty into account - divide data into training and testing sets - train the model in the training set - evaluate predictive performance in the testing set - predictive correlation: `\(r = cor(\mathbf{y}, \hat{\mathbf{y}})\)` - predictive correlation squared: `\(R^2 = cor(\mathbf{y}, \hat{\mathbf{y}})^2\)` - mean-squared error: `\(\sum(y - \hat{y})^2/n_{test}\)` --- # Cross-validation <div align="center"> <img src="Fig1CV.png" width=650 height=450> </div> .right[[doi:10.1093/jas/sky014](http://dx.doi.org/10.1093/jas/sky014)] --- # K-fold cross-validation <div align="center"> <img src="Fig1-18Bishop.png" width=650 height=450> </div> .right[[PRML](https://www.microsoft.com/en-us/research/people/cmbishop/)] --- # Repeated subsampling cross-validation <div align="center"> <img src="resamplingCV.png" width=600 height=400> </div> * Repeat this process many times (e.g., 100~200) * Compute how frequent (%) model A performed better than model B * Useful when the number of samples is small --- # Cross-validation for RRBLUP Training and testing sets partitioning `\begin{align*} \text{Training} &\in (\mathbf{y}_{trn},\mathbf{W}_{trn} ) \\ \text{Testing} &\in (\mathbf{y}_{tst},\mathbf{W}_{tst} ) \\ \mathbf{y}_{trn} &= \mathbf{W}_{trn} \hat{\mathbf{a}}_{trn} + \mathbf{e}_{trn} \\ \end{align*}` How to do a cross-validation? -- `\begin{align*} \hat{\mathbf{g}}_{tst} &= \mathbf{W}_{tst} \hat{\mathbf{a}}_{trn} \end{align*}` -- Then evaluate `\begin{align*} Cor(\mathbf{y}_{tst}, \hat{\mathbf{g}}_{tst}) = Cor(\mathbf{y}_{tst}, \mathbf{W}_{tst} \hat{\mathbf{a}}_{trn} ) \end{align*}` --- # Cross-validation for GBLUP Training and testing sets partitioning `\begin{align*} \mathbf{y}_{trn} &= \mathbf{g}_{trn} + \mathbf{e}_{trn} \\ \mathbf{g}_{trn} &\sim N(0, \mathbf{G}_{trn, trn}) \\ \mathbf{y}_{tst} &= \mathbf{g}_{tst} + \mathbf{e}_{trn} \\ \mathbf{g}_{tst} &\sim N(0, \mathbf{G}_{tst, tst}) \\ \end{align*}` How to do a cross-validation? -- Compute BLUP of `\(\mathbf{g}_{tst}\)` given `\(\hat{\mathbf{g}}_{trn}\)` `\begin{align*} BLUP(\mathbf{g}_{tst}) &= E(\mathbf{g}_{tst}|\hat{\mathbf{g}}_{trn}) \\ &= Cov(\mathbf{g}_{tst}, \hat{\mathbf{g}}_{trn}) Var(\hat{\mathbf{g}}_{trn})^{-1} [\hat{\mathbf{g}}_{trn} - E(\hat{\mathbf{g}}_{trn})] \\ &= \mathbf{G}_{tst, trn}\sigma^2_{g} \mathbf{G}_{trn, trn}^{-1} \sigma^{-2}_g \hat{\mathbf{g}}_{trn} \\ &= \mathbf{G}_{tst, trn} \mathbf{G}_{trn, trn}^{-1} \hat{\mathbf{g}}_{trn} \\ \end{align*}` -- Then evaluate `\begin{align*} Cor(\mathbf{y}_{tst}, \hat{\mathbf{g}}_{tst}) = Cor(\mathbf{y}_{tst}, \mathbf{G}_{tst, trn} \mathbf{G}_{trn, trn}^{-1} \hat{\mathbf{g}}_{trn}) \end{align*}`