We will use the BGLR R package to fit Bayesian alphabet regression.
We will use the the same rice data from last week.
library(BGLR)
out<- read_ped("../../../../../teaching/2016/ASCI896/day16/RiceDiversity_44K_Genotypes_PLINK/sativas413.ped")
p=out$p
n=out$n
out=out$x
#Recode snp to 0,1,2 format using allele 1
# 0 --> 0
# 1 --> 1
# 2 --> NA
# 3 --> 2
out[out==2]=NA
out[out==3]=2
W=matrix(out,nrow=p,ncol=n,byrow=TRUE)
W=t(W)
for (j in 1:ncol(W)){
W[,j] <- ifelse(is.na(W[,j]), mean(W[,j], na.rm=TRUE), W[,j])
}
# accession ID
fam <-read.table("../../../../../teaching/2016/ASCI896/day16/RiceDiversity_44K_Genotypes_PLINK/sativas413.fam", header = FALSE, stringsAsFactors = FALSE)
head(fam)
rownames(W) <- fam$V2 # 413 x 36901
# MAF=0.05
p <- colSums(W) / (2*nrow(W))
maf <- ifelse(p > 0.5, 1-p, p)
maf.index <- which(maf < 0.05)
W <- W[, -maf.index] # 413 x 33701
# phenotypes
rice.pheno <- read.table("http://ricediversity.org/data/sets/44kgwas/RiceDiversity_44K_Phenotypes_34traits_PLINK.txt",header=TRUE, stringsAsFactors = FALSE, sep = "\t")
table(rownames(W) == rice.pheno$NSFTVID)
y <- rice.pheno$Flowering.time.at.Arkansas # # use the first trait
index <- !is.na(y)
y <- y[index] # 374
W <- W[index,] # 374 33701
We will first create a list named ETA that includes a marker matrix and a type of model we want to fit. If you set model = BayesA
, the BGLR
function will run Bayesian ridge regression. In the BGLR
function, set how many MCMC and burn-in samples you would like to take by setting the nIter
and burnIn
arguments.
# rule-based priors
?BGLR
ETA <- list(MRK=list(X = W, model = "BayesA"))
fit.BayesA <- BGLR(y = y, ETA = ETA, nIter = 500, burnIn = 250, verbose = TRUE)
head(fit.BayesA$ETA[[1]]$b) # estimated marker effects
To fit BayesB, set model = BayesB
. In the BGLR
function, set how many MCMC and burn-in samples you would like to take by setting the nIter
and burnIn
arguments.
# rule-based priors
?BGLR
ETA <- list(MRK=list(X = W, model="BayesB"))
fit.BayesB <- BGLR(y = y, ETA = ETA, nIter = 500, burnIn = 250, verbose = TRUE)
head(fit.BayesB$ETA[[1]]$b) # estimated marker effects
To fit BayesB, set model = BayesC
. In the BGLR
function, set how many MCMC and burn-in samples you would like to take by setting the nIter
and burnIn
arguments.
# rule-based priors
?BGLR
ETA <- list(MRK=list(X = W, model="BayesC"))
fit.BayesC <- BGLR(y = y, ETA = ETA, nIter = 500, burnIn = 250, verbose = TRUE)
head(fit.BayesC$ETA[[1]]$b) # estimated marker effects