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to y: is applied so that
k-1
d.xlz = El y:,

where d is determined later by equating the coefficients of x’2. Certain rectangles r(v)
with (y1, -+, Ys-1) 88 & mid-point are non-overlapping and cover the entire space Rg
forv; = 0, k1, 2, --- . If x? < ¢, then bounds on 7 in terms of the integral of the (k —1)
dimensional normal frequency function over the rectangle r (v) are obtained. Prob. {x'* < ¢}
is the sum of T over x"? < ¢, so the integral over the sum of rectangles whose mid-points
lie within the hypersphere x’® < ¢ is considered. Two hyperspheres, one which containg the
sum of those rectangles, and one which is contained in it are used for the bounds, giving

Ao Fy_i(ca) < Prob. {x2 < ¢} € M-Frala),

where Fi_i(z) is a chi-square distribution function with (¢ — 1) degrees of freedom and
A\, Az, €1, C2 are functions of ¢, n, k and p(, -+« , pr . As n — o, both bounds tend to
Fj.1(c). Bounds of the same form are obtained for Prob.{x? < C}. Closer bounds
for Prob.{x? < C} are given in terms of a non-central chi-square distribution.

21. Estimation of Genetic Parameters. C. R. HenpERsON, Cornell University.

Many applications of genetics and statistics to the improvement of plants and animals
deal with experimental data for which the underlying model is assumed to be.
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Ya = ‘_El bi Zia -+ 'Ex Ui Zia + €a,
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where b; are unknown fixed parameters, Z;. and z;, are observable parameters, the u; are
a random sample from a multivariate normal distribution with means zero and covariance
matrix || oy; ||, and the e, are normally and independently distributed with means zero
and variances o2 . If o;; = O when ¢ 3¢ j and if ¢2 = ¢? , the model is the one usually as-
sumed when components of variance are estimated.

Three different estimation problems are involved, (1) estimation of b; under the assump-
tions of the model, (2) estimation of u; and (3) estimation of ¢;; . The first two problems
are not solved satisfactorily by the least squares procedure in which the u; are regarded
as fixed, but the maximum likelihood solution does lead to a satisfactory estima-
tion procedure.

Assuming that the o;; and ¢2 are known, the joint maximum likelibood estimates of
b: and u; are the solution to the set of linear equations

b Q
2 b (Z Thattiafol) + 2 wi (Z thazia/ol) = 2 Bhaya/o:, h=1--+,p,
t= a i- « «
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‘%‘:l b; (? Ziazha/‘fz) -+ i§1 ui(“‘h + ? ziuzha/”:) = Ea zha?/a/”:) h = 1: creyq.

Some important applications of this estimation procedure to genetic studies are described
and certain computational short-cuts are suggested.

The problem of estimating ¢;; has not been solved satisfactory although under certain
quite general assumptions the equations for the joint estimation of b:, u:, ey;, and ol
can easily be written. The solution to the equations, however, is too difficult to make the
procedure practical. Nevertheless unbiased estimates of o:; can be obtained by equating
to their expected values the differences between certain reductions in sums of squares
computed by least squares and solving for the o¢; . In general, the expectation of the reduc-
tion due to by , +-+ , by, 1, o cuk(k L Q) is 2 ,;E;. doE (YY), where do* are the elements
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of the matrix which is the inverse of the (p + k)2 matrix of coeflicients and the Y, are the
right members of the least squares equations.

22. Estimating the Mean and Standard Deviation of Normal Populations from
Double Truncated Samples. A. C. Congn, Jr., University of Georgia.

The method of maximum likelihood is employed to obtain estimates of the mean and
standard deviation of a normally distributed population from double truncated random
samples. Two cases are considered. In the first, the number of missing variates is assumed
to be unknown. In the second, the number of misging (unmeasured) variates in each tail is
known. Variances for the estimates involved in each case are obtained from the maximum
likelihood information matrices. A numerical example is given to illustrate the practical
application of the estimating equations obtained for each of the two cases considered.

23. Minimax Estimates of Location and Scale Parameters. GoriNaTH KaLLI-
ANPUR, University of North Carolina.

If the joint fr. f. of the random variables X, , -++ , X contains only a scale parameter
and is of the form
1 n TN
(X—N Y4 :; 3"t "'a— ’

then under mild restrictions the following theorem is proved:
THEOREM 1: If the loss function is of the form W a—?—-‘-x) , the best or minimazx estimale
a

a@o(z) of o minimizes

w.r.l. & and further,

ao(ﬂxly"')“xh’)“I‘ao(zly"'yzh')y “>O-

When both location and scale parameters are present and the joint fr. f. is of the form

1 n — 6 Ty — 0
’a_)vp « » ST o s

(under conditions similar to those in Theorem 1) we obtain two results for the estimation
of 6 and a, respectively, one of which is:

6—8 5 L
TueoreM 2: If the loss function is of the form W(-————), the best estimale 8o(zx) of 6 minimizes
o
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These theorems have been applied to derive minimax estimates in the case of standard
distributions. Finally, the problem of estimating the difference between the location
parameters of two populations is briefly considered. The results obtained in this paper are
a continuation of the line of approach suggested in Theorem 5 of Wald’s, ““Contributions



