to y_i is applied so that

$$d \cdot x^2 = \sum_{i=1}^{k-1} y_i^2,$$

where d is determined later by equating the coefficients of x^2. Certain rectangles $r(v)$ with (y_1, \ldots, y_{k-1}) as a midpoint are non-overlapping and cover the entire space R_{k-1} for $v_k = 0, \pm 1, \pm 2, \cdots$. If $x^2 \leq c$, then bounds on T in terms of the integral of the $(k-1)$ dimensional normal frequency function over the rectangle $r(v)$ are obtained. $	ext{Prob.} \{x^2 \leq c\}$ is the sum of T over $x^2 \leq c$, so the integral over the sum of rectangles whose mid-points lie within the hypersphere $x^2 \leq c$ is considered. Two hyperspheres, one which contains the sum of those rectangles, and one which is contained in it are used for the bounds, giving

$$\lambda_1 F_{k-1}(c_0) \leq \text{Prob.} \{x^2 \leq c\} \leq \lambda_0 F_{k-1}(c_0),$$

where $F_{k-1}(c)$ is a chi-square distribution function with $(k - 1)$ degrees of freedom and $\lambda_1, \lambda_2, c_1, c_2$ are functions of c, n, k and p_1, \cdots, p_k. As $n \to \infty$, both bounds tend to $F_{k-1}(c)$. Bounds of the same form are obtained for $	ext{Prob.} \{x^2 \leq C\}$. Closer bounds for $	ext{Prob.} \{x^2 \leq C\}$ are given in terms of a non-central chi-square distribution.

Many applications of genetics and statistics to the improvement of plants and animals deal with experimental data for which the underlying model is assumed to be:

$$y_a = \sum_{i=1}^{p} b_i x_{ai} + \sum_{i=1}^{q} u_i z_{ai} + e_a,$$

where b_i are unknown fixed parameters, x_{ai} and z_{ai} are observable parameters, the u_i are a random sample from a multivariate normal distribution with means zero and covariance matrix $\| u_i \|$, and the e_a are normally and independently distributed with means zero and variances σ_a^2. If $u_i = 0$ when $i \neq j$ and if $\sigma_a^2 = \sigma_i^2$, the model is the one usually assumed when components of variance are estimated.

Three different estimation problems are involved, (1) estimation of b_i under the assumption of the model, (2) estimation of u_i and (3) estimation of σ_i. The first two problems are not solved satisfactorily by the least squares procedure in which the u_i are regarded as fixed, but the maximum likelihood solution does lead to a satisfactory estimation procedure.

Assuming that the σ_i^2 and σ_a^2 are known, the joint maximum likelihood estimates of b_i and u_i are the solution to the set of linear equations

\[
\begin{align*}
\sum_{i=1}^{p} b_i (\sum_a x_{ai} x_{ai}/\sigma^2_a) &+ \sum_{i=1}^{q} u_i (\sum_a x_{ai} z_{ai}/\sigma^2_a) = \sum_a x_{ai} y_a/\sigma^2_a, \quad k = 1, \cdots, p, \\
\sum_{i=1}^{p} b_i (\sum_a z_{ai} x_{ai}/\sigma^2_a) &+ \sum_{i=1}^{q} u_i (\sigma^2_a + \sum_a z_{ai} z_{ai}/\sigma^2_a) = \sum_a z_{ai} y_a/\sigma^2_a, \quad k = 1, \cdots, q.
\end{align*}
\]

Some important applications of this estimation procedure to genetic studies are described and certain computational short-cuts are suggested.

The problem of estimating σ_i has not been solved satisfactorily although under certain quite general assumptions the equations for the joint estimation of b_i, u_i, σ_i, and σ^2_a can easily be written. The solution to the equations, however, is too difficult to make the procedure practical. Nevertheless unbiased estimates of σ_i^2 can be obtained by equating to their expected values the differences between certain reductions in sums of squares computed by least squares and solving for the σ_i^2. In general, the expectation of the reduction due to b_i, \cdots, b_k, u_1, \cdots, $u_k (k \leq q)$ is $\sum_{\theta} d^{\theta} E(\theta Y_i Y_k)$, where d^{θ} are the elements
of the matrix which is the inverse of the \((p + k)^t \) matrix of coefficients and the \(Y_s \) are the right members of the least squares equations.

The method of maximum likelihood is employed to obtain estimates of the mean and standard deviation of a normally distributed population from double truncated random samples. Two cases are considered. In the first, the number of missing variates is assumed to be unknown. In the second, the number of missing (unmeasured) variates in each tail is known. Variances for the estimates involved in each case are obtained from the maximum likelihood information matrices. A numerical example is given to illustrate the practical application of the estimating equations obtained for each of the two cases considered.

If the joint fr. f. of the random variables \(X_1, \ldots, X_N \) contains only a scale parameter and is of the form

\[
\frac{1}{\alpha^n} p \left(\frac{x_1}{\alpha}, \ldots, \frac{x_n}{\alpha} \right),
\]

then under mild restrictions the following theorem is proved:

Theorem 1: If the loss function is of the form \(W \left(\frac{\alpha - \tilde{\alpha}}{\alpha} \right) \), the best or minimax estimate \(\hat{\alpha}(x) \) of \(\alpha \) minimizes

\[
\int_0^\infty W \left(\frac{\alpha - \tilde{\alpha}}{\alpha} \right) \frac{1}{\alpha^n} p \left(\frac{x_1}{\alpha}, \ldots, \frac{x_n}{\alpha} \right) d\alpha
\]

w.r.t. \(\tilde{\alpha} \) and further,

\[
\hat{\alpha}(\mu x_1, \ldots, \mu x_N) = \mu \hat{\alpha}(x_1, \ldots, x_n), \quad \mu > 0.
\]

When both location and scale parameters are present and the joint fr. f. is of the form

\[
\frac{1}{\alpha^N} p \left(\frac{x_1 - \theta}{\alpha}, \ldots, \frac{x_N - \theta}{\alpha} \right),
\]

(under conditions similar to those in Theorem 1) we obtain two results for the estimation of \(\theta \) and \(\alpha \), respectively, one of which is:

Theorem 2: If the loss function is of the form \(W \left(\frac{\theta - \tilde{\theta}}{\alpha} \right) \), the best estimate \(\hat{\theta}(x) \) of \(\theta \) minimizes

\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W \left(\frac{\theta - \tilde{\theta}}{\alpha} \right) \frac{1}{\alpha^n} p \left(\frac{x_1 - \theta}{\alpha}, \ldots, \frac{x_n - \theta}{\alpha} \right) d\theta d\alpha
\]

and

\[
\hat{\lambda}(x_1, \ldots, x_N) = \hat{\lambda}(x_1, \ldots, x_N) + \frac{\lambda}{\mu}.
\]

These theorems have been applied to derive minimax estimates in the case of standard distributions. Finally, the problem of estimating the difference between the location parameters of two populations is briefly considered. The results obtained in this paper are a continuation of the line of approach suggested in Theorem 5 of Wald's, "Contributions