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Selection Index and Expected Genetic Advance

C. R. HnNnrnsoN
Department of Animal Husbandry, Cornell Uniaersity, Ithaca, New Yorh

-fHE selection index employed in plant and animal breeding refers usually
I to u linear combination of observations that is used to compute, for each

inclividual alailable for choice, a criterion for selection. We shall call the

mathematical description of this linear function the selection index, I, and a

numerical value actually computed by an index from the observations on a

particular individual, the selection criterion. For example, suppose that the

records available on each of several dairy sires ateyl: mean of l0 progeny, ye =
dam's record. Then the index might be something like

1 :'77(Yt- ur) * .08(Yr - t r)'

If, for a particular sire, y, - 450, )z : 500, p1 = 460, !.r2 = 480, the selection

criterion for this sire would be

.77(450 - 460) + .08(500 - 480) - -6.1
The selection index can be used for several different purposes, e'g',

1. Selection on a single trait using information on the individual and

certain of its relatives (5).
it 2. Selection on two or more traits using records made by the individual

(3).

3. Selection on two or more traits using records on the individual and

its relatives.
4. Selection of line-crosses using data in addition to that on the specific

cross (4).

The first application of the selection index to plant breeding was by Smith

(?), and the first ro animals by Hazel (3). An excellent brief description of the

merhod was given by Comstock (2). Cochran (1) presented many of the mathe-

matical and statistical problems encountered in constructing indexes.

The foregoing publications and all others on the subject, so far as I am

aware, have justified the procedure only for the case in which the information
available on each candidate for selection is the same. More precisely, the N records

and the underlying genetic value available on each individual are a random
sample from some known (N + l)-variate population. In actual Practice, at least

in animal breeding, this is seldom true. Rather, choices must be made among

animals with clifferent amounts of information. It does turn out, as will be shown

in this paper, that the selection index procedure is in fact valid for the latter c:rse.
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r42 STATISTICAL GENETICS AND PLANT BRIEDING

SELECTION INDEX FOR THE EqUAL INFORMATION CASE

.l/ records, say }r, . . ' ,}N, are available on each candidate for selection. The v

breeding value of ttris,inaivia,,al is denoted' by T. We shall deliberately not define

breedin! value at this time, but will do so later in the Paper' Yr'' ' ''YN' T are

assumed to have an (N f lj-variate normal distribution with variance-covariance

matrix

Cr: ... Czu

or in matrix notation'

Ic,,
I

I c,,
lr
I CrN

1.,

If1 +l

I'lt'gl
. l, wnere C is an N )( N, non-singular matrix'

and g is a scalar. TheT's have means &r,' ' 'ruN'

CrNCrz

Cr*

lz

. . CNlt

..LN

tlsan

N X 1 vector,

Construction of the Index

An index is wanted of the following form

I: br(yr-p1) +.'.* br(YN-PN)'

of all such linear functions which one is ,.best,' in some sense? To answel 
'this \G1,

question we must define what we mean by best' A logical diterion would be

that one which in the long run maximizes genetic progr€ss, see, for example'

Lush (6). Now the 
"*p".,"f, 

value of any paiti.ular T selected on the basis of

such an index is
E(TII):lrr*brr(I-Pr)

: pr * A (r - ur).
62t

Tlrisisthewellknownformulafortheregressionofonevariableona
second variable in the bivariate normal distribution' This is not true for other

distributions,butmaybeasuitableapproximation.ThenthemeanoftheT,sin
a selected grouP is

oTt -E(Tli):ptr*-(I-t')'
6'r 

z

If selection is strictly according to the index, i - /r, is equal to - d1, where z is the
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ordinate of the unit normal distribution at the point of truncation, and q is the
fraction of indexed individuals that is selected. Thus, the expected genetic progress
in one cycle of selection on an index is

ctt z

- 
- 6b which can be re-written as

t
\

of selection - cs is constant, the &'s
q

of the index should be chosen so as to maximize r77. Differentiating log r11 : log o11

11
- _ log cz,r * - log 421 with respect to b1,. . .,b1s, eeuating the partial derivatives22
to zeto) and noting that

o11 : bldyrt +...+ bNdywr

and c21 : bzrI2s, | 2b1b2ayty, +. . . + b2Nd2vu

the followine equarions intniffurc obtained: 
czt

b1o2yr * bzCuru" +...+ bsdylyr : 6yrT-

c2l
bldyryr ! b2ozyr+...+ btsdy:yr : dyrT-

(^ 6TI
L erc.

Since the magnitude of of f o71 does not afiect the proportionality of the
b's, it has no effect orr rrr and can be chosen arbitrarily. For convenience let us
choose the value, l. Thus we have the above equations wit]n 6f f 611 deleted.. In
matrix notation the equations now are

Cb=t, (r)
where b is the N x I vector, br, br,. ..,b*, c is the variance-covariance matrix of
the 2's, and f is the vector of ooy's. Note that these inclex equations are exactly
like "normal" equations of multiple regression except that population variances
and covariances appear in place of sample sums of squares itrd. ..orr-products.

Expected Genetic Progress

with the b'.r determined, the expected genetic progress in one cycle of
selection by truncation of a set of selection criteria can be computed from

z
rTIdT -'

q

a2r 9

Z
rTI * dT,

q

Since for any given population and intensity
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rrr canbe calculated conveniently by noting that

AND PLANT BREEDING

(otr)' 6Tt 6ar

r2^, : 
\v til 

- --- isince 
-.,: 

r)
-?62t 6r"t 6 ".r u r

blovr'r *' "f bNdYNr

r2t

Also, we note that the expected value of a particular T' given the selectioq

criterion, 1r, is 
.,rr

E(TlIo):Pr*-(Io-ur)
6"1

: pt * Is, since a"nlo2r: 1 and I'lr : 0'

Other Properties of the Selection Criterion

Theselectioncriterioncomputed.bytheSelectionindexhasotherproper-
ties of interest in addiiion-to ma*imiration of rry ar.id of expected genetic progress'

1'E(r-D't;';l;t'""mamongurili""utfunctionsofthegeneralform
of the selection index. That is, the average value of lhe lguared 

deviations of

criteria from true ;;JJ;g values i' "ii"lt""-' 
This is easy to prove by

rniniroirirrg, for variations in b'

E(I -T)' : Efbr(n- p') +"'1 bN(vN -'uN) -Tl'
: blczvt | 2b1b26vtv'+'''+ b26d2vx - bldvrr-"'

- bsdyrT * o"'

Whenthisexpressio"i'im"'entiatedwithrespectto'b'sandthepartial
derivatives ur. 

"q,rui"d 
to zero,the equati-oru rr iri t* obtained' Note that this

property does not ;il" tlT" tt:t:,Tlli" ttot*ur distribution' nor does the

Dropertv maxtmtzatio i of r"'If the value of n1f - T)' is wanted fior a particular

i"ai", ii can be comPuted either bY

62r - 1,rt : r.2T -(bldvrt +'''+ bNo"r:r) or by

ozr(l - r2r).

A proof of these computing formulas is'

E(I-T)':c2r-2oulo2t
: 6-2T - dTI, since o2l : 6Tl

""(t
d"T\ I

:"u(, ;)

It is also of interest to note that
oz, : y21162.!.

(ott)' \ 6'rr
lsince-:1

o2r orr I o2r

- r'.rr).
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The proof of this is,

or, _ (otr)t _ (o"r), _ (orr), 
c2.r : t2rrc2r.

o't ctt c2r 62r

2. E(Tlyr,...,I") = the selection criterion in the multivariate normal
case. This comes directly from the well known result concerning the mean of a
conditional distribution in the multivariate normal distribution. Thus, the
average value of 7's associated rvith a given set of y's is equal to

pr * br()'r - pr) *...* b*(y,o - trN),

where tl;.e b's are exacth, those of the selection index. Accordingly, we can state
that the selection index procedure takes as the selection criterion the average
value of all T's that are associated with 2's equal to those on the individual
that is a candidate for selection. Of course, this subset of" T's shows variation, but
less than the variation of T's in the entire population. From multivariate normal
theorr. this variance is

o21(l - rt12).

3. The probability of selecting the higher of a pair of Z's is maximized.
The proof of this is presented in the next section of this paper.

Unknoun XIeans

\\'hat if the p's are not known? In the equal information case any arbitrary
values can be used, for it can be seen that

I = b.(y, - Fr) *. . .* b*(y" - F*)
: bryr +. . .+ bNyN - (brtrr *. . .* bNFN).

Notice that the same function of the pr'.r appears in each selection criterion
and consequently has no effect on ranking. This is not the case when the
information is different from one individual to another.

SELECTION INDEX FOR THE UNEQUAL INFORMATION CASE

\\rhen two individuals have difierent information available for evaluating
their breeding values, it is clear that different indexes are required. But then
there is more than orre rrr, and it is obvious that the justification of the selection
index method described in the preceding section no longer is valid. For example,
suppose selection is from two kinds, A and B. A11 individuals in the A group
have the same kind of information, and an index say Ia is used to discriminate
among them; similarly for the B group, 1, is used for discrimination. Then the
expected progress through selection on the basis of these two indexes is

(N6ra1aza f Nshlezs)/(q^N" f qnNe),

where A-, and Nu are the numbers of individuals available for selection in the
two groups, Qrlr{e I qr-l/, is the number of individuals required to be selected,
and zo and zo are ordinates of the unit normal distribution at the point of trun-
cation. N'Iaximization of this expression appears difficult since two sets of b't, qn,
and qs must be determined. The difficulties multiply rapidly as the number of
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::
broro/V(1 - r2toto)d'to

dI oTo
l\ft - r2ro:ro)

61, 62To

1

different groups increases' Strangely,"":"gl this problem seems not to have been

.."tia"ti in previous discussions of selection'

Maximizing Probability of Selecting the Better of Two Indiaiduals

The proble* tt"ut"a by un9tu11 information in the individuals con-

sidered for selection ;;; soiotd ri' n"ii"s ; selectiol 
.lliterion 

which will

maximize the probab'iil;r;"r"r*,i"g.the beiter of any two individuals' This

method should then certainly maximize genetic progress. suppose we have a

set of records Yr,. .',Y* available tot tnJJg u"t;"i individuals A and B

with breeding oulo"''?a and Tu'Eor t*"*fr?' )r migh-t be the record on A'

)e the record on the dam of A' and yu' '-''\"n ir'"-t"to'-tat on 10 progeny of B'

The varianc"-.ouurrurrll^*"oi*'"t the y,s i, u, t"tot., c. The covariance between

Ta and'the y's 
" 'n" ""tt'r' 

ta and b;;;; Tu and the y's is tu' Tn'and

' Tu are assumed to have the same mean and can have any variance-covanance

matrix we choose' il; ou'i"ur"' u"a 
'nl'y;' 

ut" u"o*"d t-"^-t"ttot the multi'

variate normal distribution. we want two indexes, one to comPute a selection

criterion for A and the second to comPute a criterion for B'

I^ = b1(yr - rrr) +" '* bN(YN - Px)'

Iu : b1*(yr - ur) +" '+ bx*(Yto - FN)'

Notethatthesamesetofrecordsisusedforthetwoindexes,butsomeof
the btand#:;,?ffi;13'*" 

p.orubirity or selecting the better of two T's the

following probabilities must be as large as possible'

P(ro-r")olTn-Tt)o)'
P(Ir. - r" ( olrr' - Tu < o)'

Now for any fixed value of T^ - Tu' 
'uy 

Ai tttt dlstribution of Io - I*' is normal

with mean

IrrA-lrrB * brom(k-/'lrA + PTBJ'

where Io - Ie - Ie and To : Te - TB' This mean then simplifies to b1o1ok'

since trr1^ : l.Lrn : O u"a pra: l,lrB'The variance of this conditional distribution is

(L - r2ro'ro) o2ro'

Theprobabilitiesabovecanbemaximizedifwemaximizetheratioofthemeanto
thestandarddeviation*r'."rr,positiveu.'d*i,,i,,,i,ethisratiowhenftisnegative.
Bothofthesecanbeaccomplishedif*.*u*i*i,.theratioofblpstothestandard
deviation, that is'

\ froTo

orr,./t - f2roTo'
(1u)



!

ir
l

HENDERSON: SELECTION INDEX

1

Since 
- 

is constant, maximization of (1a) is certainly accomplished by
UTD

maximizing ryp1p. But since Io : Ia - Is is
Ip: (b1-br*)yr +...+ (bN-br.rx)yx

: saY a{t *. . .* 6NyN,

it is necessary now simply to solve the usual index equations (1) of the form

AF2tr-l Bzcyry, +...+ pxdytvp: dvrTD : cvrTt -dvrTB,
etc.)
or in matrix notation,

C B : t.r -tn since d"ro : dyTe -dyTo : te -tn.
Then, B: C-l(te-te)

: C-1te - C-lts. (2)

Now, suppose we compute separate indexes for evaluating A and B as

though A were to be ranked relative only to others with the same information
and B relative to others with the same information, but different from A's. Using

equation (l), we have

Cba=taor
be: C-lta, and

C b6=ts or

bn: C-ltn'
Now note that,

br.-br-C-1te-C-1te,
which is exactly the same as B, see (2). Thus, we have proved that the usual
selection index criteria are best for ranking regardless of unequal information.

Unknoun Means

It was shown in an earlier section that lack of information concerning
the p's has no effect on ranking when all individuals have the same information.
This is not true, however, with unequal information. In the case above, involving
A and B,

I^ - I, : (b, - br*) (y, - pr) *...* (b* - b**)(y* - t*).
Clearly this difference, which we use in choosing between A and B, contains a
function of the p's, and if the p's are unknown, the difierence cannot be com-
puted. One way out of this difficulty is to let

I = brYr +. . . + b*y* rather than

bt(yt - p1) +. . .* b*(y* - F,r),
and then to maximize r' subject to the condition that E(I) : O. To illusffate,
Suppose lrls, le are assumed to have a common mean, p and we want an index,

I:bryr *bzyz *beye,

r47
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E(I) = E(brY, *bz'fz * baYs)

= (b1 * b, *ba) F.

Consequently, E(I) - 0 if b1 *trz +,b' is required

tion must therefore Ue impo'ed on the selection index

usual equations are 
20 b1 + b2 + 2b3 = 5

b1+ 25 bz+ ?bs=2

Zbr* 3b2+30b3=l'

By augmentins these equltions. with a t1t1i1i:::t'i:"t:::' u' u' follows' maxi'

;#;H'j;';;:;;;#ol i o' * bs = 0 is accomplished'

20b1+ bz+ 2b3*a:5
br+25b2+ }bs*a=2

2br* gb2+30bu*a=1

br* bz* b'l* -0'
The solution to these equations is bt-= '1077' bz - '0367' b' = -'0710' a =

3.024l.This is in contrast' to the followi"g Jt'io;when p is known' b.-= '2455'

o, : 'Tn}i;;"l,i:"i 
approach to the probtem or unknown ps is to use their

estimates in the ,"g''lu'-i"d"x' In the abtve example' the index would be'

1 : .2455(v,- 0) *'0690(vr - p) +'0101(ve - F)'

Nowitturnsoutthatiftheestimatorsusedarethoseobainedbymaximum
likelihood from the y's that were employ; i* the index' the index is actually

the same as that deiived by requiring TGt = o' f-"t us illustrate in the above

example. The maximt* riitaint"a 1L1j 
'1t*T:Ei.is krYr * kzYz * keYs'

;;# the A's are the solution to the following equatlons:

20k1+ kz* 2k3+a=0
k1+25k2+ 3k3*a=0

2k1+ 3kz+30k3+a=0
kr* kz* k3 =1'

Thesolutioniskl-'4246'k':'3257'ks:'2497'a--9'3169'
Then, I : .2455(vt- p) + '0690(vz- p) + '0101(v:- 0)

: .2455 vr * .0690 Yz * '0101 yz- '3246 fi'

: '2455vr * '0690 Yz * '0101 vs- '3246('4246vta 3257 yz

+ '24e7 Y)
: .1077 Y- '0367 Y2- '0710 Yz'

which is exactly the same as the index which requires E(I) = 0' ''

AND PLANT BREEDING
148

subject to E(I) = O'

to equal 0. This condi-

"qrruiiottt. 
SuPPose the
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A general proof of the equivalence of these methods follows: The records
available for evaluating an individual are the elements of an N X I vector, y,
with variance-covariance matrix, C, and means XB, where X is a known N X p
matix and B is an unknown p X 1 vector. The covariance between T and I is
theNXlvector,f.

Then the usual selection index is

b'(y - Xp) : t'C-1(y - XB), and if the m.l. estimators of B are
substituted for 6 it becomes

t,C-,(y - x 6)
The m.l. estimator is 6 : Ly, where L, a p X N matrix, is the solution to

CL'+ XA : O

X'L' -I,
where A is a p2 Lagrange multiplier, and 1 is a p2 identity maLrix
(not the selection index). Solving these equations,

L', : C-1X(X/C-1X)-1.
Therefore, A : LV : (X/C-1X)-1X/C-1y.
Then the index : t'C-lly - X(X'C-1X)-1X'C-1y]

: 1/Q-t[f - X(X/C-1X)-1X'C-']y. (3)
In the second method r' is maximized, subject to E(I) : 0. In this case b is the
solution to the following equations

Cb -f'Xa = d
x,b - 0,

where a is a p X I Lag:range multiplier, and 0 is a p X I null vector.
Solving these equations,

b = [I - C-1X(X'C-1X)-1X/]C-1t,
and the selection index - b,X

= t'C-1 [I - X(X'C-1X)-1X/C-1]y,
as in (3), thus completing the proof.

SETTING UP SELECTION INDEX EQUATIONS FOR ONE TRAIT
It is apparent from the preceding sections that the selection index method

has very desirable properties at least in the multivariate normal distribution.
But it must also be recognized that, strictly speaking, these properties exist only
when the necessary population variances and covariances are known. Of course,
the c matrix, the variance-covariance matrix of y's, can be estimated directly
from an adequately large sample from the population of y's. In conrrast, the
covariance between T and the y's cannot always be estimated directly since T is
sometimes unobservable. Therefore, quantitative genetic theory is then invoked
to infer the value of such covariances. Also, on some occasions the elements of'C
are inferred from a combination of data and theory, if data alone are inadequate.
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Coefficients of Left Hand' Sides of Index Ecluations

Icleally one should like to have a very large sample from the N-variate

population replesented by the y's. Then the variance-covariance matrix can

be estimated accurately enough that there need be no concern about the

consequences of using an estimate of C rather than parameter values'

computing c when iII genettc variation is ad'd'itiae.In animal breeding the ele'

ments of C are sometimes estimated under the assumption that the model

underlying the record on the ith animal is

yi=pi*g1 *ei, (4)

and that on the iih animal is

Y::[r:*95*e1'
where pa and py are fixed, gr and g are additive genetic values of the two indi-

viduals, and e'oand e1r"p."r"nt all other causes of variation. It is assumed that

St, 8:j, €i, ei, follow a multivariate distribution with all covariances zero except

irrul'rr"i*.Ln.q,; and gu which is stated to be a a'ip,n,where a', is the numerator

of Wright's 1a; coefficient of inbreeding and oen is the population additive genetic

oariarri. (the initial population in case there has been inbreeding)' The variance of

y,; is assumed to be 
-"e).1Q+F)"en, 

whete o2" is the variance of e in the original

population, and Fa is the inbreeding coemcient of the ztlz individual. These

assumPtions imPlY:
l" No selection since the period defining the initial population'

2. AII genetic variance is additively genetic'

B. No covariance between additive genetic values and environmental

valuesandnocovariancebetweenenvironmentalr'alues.
Then the C matrix for computing b's to use with single records on N individuals

is

STATISTICAL GENETICS AND PLANT BREEDING

?r\dln \
a:\djn I:l

o2"lFxo2n/,

?
f a2" t F$2" at262e

I urro'* ozy -l F2c2g

t::
\ ?rNr2e zzNd2g (s)

where or2 = o*2 * ou2 = variance of records in the initial population' It is some-

times convenient to write this matrix as

/ t + Yrt-r' aszh2 arrht \
o2" { u,rht 1 + F2h2 a:xhj l

\ : : i /'
rvhere ftz = heritabilitv in the narrow sense = o'rlo'o'

(6)

More than one record. per ind,iuidual. In animal breeding applications two oI

more records on the same trait of an animal are sometimes used in selection'

Let us assume as an approximation that the correlation between two records on

an animal is (r * Fh17i1 + Fh,), where r is the correlation in the initial popula-

tion between records on the same animat' This implies a model

yi: = !r * pi -l- gi t ei;'
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where pi * e'i : €r of the model in (4); p', is permanent to the individual, its vari-
ance is o2o, and it is not affected by inbreeding. All elements of the model are
uncorrelated. Then,

,=(o"r*o2n)fo2".
under these assumptions and when the y's refer to the means of n, records in the
first individual, n, in the second, erc., rhe itlz cliagonal element of (6) is modified
to

If(n;-IJr
f F1h2, etc.

ni

When n = l, the diagonal element simplifies
Using group means. Oftentimes we wish to
as a set of progeny or of sibs in the selection
as already stated in this section, the diagonal
say the illz is

l5I

s

(7)

to 1 * Fh,, as it should.
use the mean of some group, such
index. Under the same assumptions
of (6) corresponding to any group,

* Fih' f (pi -

where zi, is the number of records on each member of the group,
p,' is the number of individuals in the group,
Fn is the inbreeding coefficienr of each member of the group, and
au,, is the intra-group numerator relationship.

The off-diagonal elements of (6) remain the same as though there were
only one member in the group. This, of course implies, that every member of a
grouP has the same relationship to any other individual whose record. is used
in the selection index. Nore rhat when pu = l, the expression in (g) reduces tcr
(7), and when n, = I reduces to

p + Fih2 * (p, - l)a,,,h21/p,.

(Ise of Genetic Variance Components
In a population with no inbreeding and with the environment contribut-

ing nothing to covariance between records on different individuals it is easy to
express covariances between relatives' records in terms of Wright's coefficient of
reiationship, dominance relationship, and components of genetic variance. These
genetic components are,

t. Additive: variance due to single gene effecrs.
2. Dominance: additional variance due ro allelic gene pairs.
3. Additive X additive: additional variance clue ro non_allelic gene

pairs.
4. Additive x dominance: additional variance due to a single gene

and an allelic gene pair,
and so on.

In general, leL ocou refer to the variance due to the interaction of a non-

- 1)r(n

n

1lT
I

L
(8)f )u,,,ft']/nr,
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allelic genes and i allelic gene pairs. Given that there arc q loci Which contlibute

to the genetic variance of a trait, the total variance is

qqrtr t
i:0 j:0

Then, the covariance between two related

qq
2 2 aidi ozri,
i:0 j:0

1. 1.

- d2ot * - 
c2oz *

4 1.6

1<i+jSq.

1<i+jSq, (e)

where o is the Wright coefficient of relationship between i and i, and d is the

dominance relationship between them. The dominance relationship is computed

as follows for individuals A and B.

(c
A<

to

(o
B<

(n
1

dA.s : -lacnaor * acrapn]. (9)
o11

To illustrate (9), a and d for non-inbred full sibs are - and -' respectively. Thus, the

g*.ti" contribution to their covariance is 2 4

1

--:o2oa*...
64

1

* - c'to * - o2r, I - 
ozn *...

2832
17t

I - otzo * - c2zt * - a'zz *..'
4 1,6 64

etc.

Little progress has been made in estimating these genetic components,

but if good eitimates were available and if environmental covaridnces could be

eliminated, the problem of setting up C for calculation of indexes would be

completely solved for non inbred populations. Apparently gene frequencies are

reqrrired io determine the contribution of many of the components to covariance

beiween relatives in inbred populations and, of course' these frequencies are

not available for genes affecting most tlaits of economic importance.

Right Hand Side of Index Equations

The right hand sides of the equations are o.vrr'. .,dvNr : t and depend

obviously on orrl definition of Z. Three different definitions seem logical in animal

breeding applications when selection is for the individual:

l. Future production of the individual'
2. Production of progeny of the individual'
3, Production of descendants of the individual'

Dr
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(In plant breeding, selection is often among lines or line-crosses. We shall discuss

our definition of T for these cases in a later section).

Future prod,uction on ttie indiuidual. If T = future production and if it is

assumed that all records on the individual have correlation, r (= repeatability),
with each othet, or7 : ro'o in a non-inbred population. If serial correlations
exist, a different oy7 rrIUSt be assumed for first with second records as comPared

to first with third, etc. In any case orz is always a covariance between actual
records, and consequently the problem of setting up the right hand side of the

index equations is exactly the same as that for the coefficient matrix on the left.

Progeny production. If selection for production of Progeny is the main concern

of the breeder, the covariances between ) and T are simply covariances between

records on particular relatives. Ior example, suPPose )r is a record on the dam

of the individual considered for selection, and y, is the mean of paternal sibs

of the individual. Then,

dyrr : covariance between grandam's and grandprogeny's records.

6yzT : covariance between tthalf-aunt" and niece.

Descend.ants' production If selection is for descendants, this is almost equivalent
to selection for additive genetic value, for note that in a non-inbred population
the covariances between an individual's record and its descendants' records are

T1
Progeny: -c216|--o2zo24

L

Grand progeny: - o2n *
4

117
Great grand progeny: - ozto I - 

62zo + 
- 

62so *. . '8 64 512

111
Descendant n generations removed: - c2to t - a'2, +...+ 

-o2io 
*' . .

2n 22n 2i"

Thus, it is obvious that after very few generations, the coefficient of cg,o is over-

whelmingly large as compared to any of the other components. Consequently,

we should be primarily concerned with additive genetic value, that is we can let 7
: additive genetic value. Then co;y is simply aioc2to, where aro is the relationship
between the animal with the ithrecord and a, the animal being evaluated. Further,
we note that the value chosen for ozro, appearing as it does in all right hand members,

does not affect ranking, and consequently is not needed to maximize progress through
selection. If, however, we wish to estimate how much progress will, in fact, be made

we do need to know either ozto ot h2.

If we use a;qc.216 3.s right hand sides of equations in conjunction with left
hand coefficients of the form in (6), we can then divide both sides of the equations

by o2, and. obtain selection index equations requiring knowledge only of relationships,

inbreeding coefficients, h2, and if repeated records are used, r.

1,

*-o2ao*.'.
8

1t
- 

o2zo * - 
o'so *.

1,6 64-t
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Then, rry has a simple computing form,

lffirTr: I

! ,-2r

:/b'il+...+br"*"
Let us illustrate these last simple procedures. We wish to construct an index basedon the individual,s record, 1tr, and, a record on each of the parents,./p,_?s. Then theequations to be solved for b, s, using the simplifying assumptions are

bla"r"c2ro +...+ bil*Jil
62rc

[0,

b2

b3

1

1
_h2
2

1
_h2
z

'-n' :"1
I1 0l

Io 'J

't

_h2
z

1.

_h2
z

The solution is b, : h"(2 - hr)lQ - 6t1,
bz: bs: hr(1 _hr)lQ_ha), and

ttr:JW
lh2l? - )L.2\
l^' \" 'LL r
I-........----

1 2-h4
As a second illustration, suppose we wish to select sires on the basis of the meanof p half-sib progeny. Then the index equations are

1

1 f (p-1)- lz
41

b: -h2p2

l- - 
2Ph'

4 f (p-1)h:'

i- nh t_-
and r11 :

X + + (p-l)h'

Q
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Altnnatiue com\utatio":'"1::t!::;mes 
usefur variation on the selection index method

isthefollowing' r : .yro.yrt *...*.ylo dvxr,

where 7's are the solution to the following equations'

ozr'Yt' I cvryff2+'''+ dvrvN?N : fr- Irr

lYryfl\ ! o2Y'72+' + dYrYr?N : fz - Ir2t

Itisseenthatthisproceduresimplyinterchanges(y'-i,')anddvi:tascom-
e-.d:"'h':::::lllT#jtri:*ftT*J*nt'"':.,x11"1': j":'ilgt
to evaluate several 1r

one set of equations' #;;;;tt the right hand members are y - p" and these remarn

the same for all l"d*ii""r, to be evaluat.J fro- that set of records' In contrast'

the usual method n":;;;'igt't k'u"a 'td;;;;;t'h 
changes from one individual

to the next, as 7 changes' ' nple. In the usual

The proof "i'it"td""tity 
of the two methods is very srr

trfi

method,
I: b'(y-i.,),

where b is the solution to

Cb:t'or
b : C-rt'

rhererore, t : ltjll;i;f,
In the nerv method

I : .y'1,

rvhere 7 is the solution to

X'7

andtrisaPXl
II

Lagrange multiplier' The solution to 'y ls

- c-1x(x'c-1X)-'xl c-'y,

(10)

Q7:Y-l-t'
Therefore, I : 

(tC-t(Y;l)]"
- r'C-1(y - p).

rhis is the same as (10) 'i"1" 
u'*t:l::"q,lt,:";:1Jff;nJ,',i*u,., in the right

,-. ;::n,-;ff;:*X'##'iT Ti1;;lr'i"i" identical '""'tt' bv letting

,h.;";;; = y'r, where 7 is the solution to

* Xcr: Y

-0
c7

ancl the index is then y't =_tr!,, _6_r[(X/c-1X)-1X']c-1y

= ,'[-t1r - x(x'crx)-X'c-]Y. 
.

whichisthesameas(3),theproceduredescribedformaximizingrTTsublectto
E(I) = 0.
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Another interesting procedurg an expansion of rrhich is useful in prob_
Iems involving line crosses and in cases with unknown pt lrilf no*- be aescrlned.
Letyt-p+&+ei i:1,.--J,[

we wish to rank according to g'.r, their variance{ovariana madx being
G. The variance-covariance matrix of e's is E, and g,s aud e's are rrrrrrrt-red.
Consequently, the variance-covariance matrix of y,s is (G + E), and the coverierr.
between y and g is G- Now it can be shown that the criteria for selectiu, sey
v1, . . . ,vN : the vectot u, are the solutions to

(I*EG{)v-y-por
v = (I + EG{)-1(y -p). (l l)

To prove that this solution is identical to the conventional one we note that the
criteria in the ordinary index procedure are

B,y, where B, an N X N matrix, is the solution to
(G+E)B=G,or
B=(G*n;-tg.

Therefore, rhe crireria : G,(G + E)t(y - pr)

: G(G + E)t(y - p), since G is symmetric.
= [(c + E)c-l]{(y - p)

= (I + EG')'(y - F):v shown in (ll).
when pr. : XB is unknown, the following procedure yields simultaneously the m.l.
estimator of B and selection criteria based on maximizing rar subject to E(I) : 6.
Also, the procedure is equivalent to substituting 6 : m.l. dstimatorfor 6 in the usual
index equation.

X'E-1X6 + X/E-lv : X,E-1y
B-lxO + (E-'* G-')v : El'y.

The last of these equations c^an be written
XB + (I * EG-')v: yor

,, : (I * EG-r;-t1t - XP), where p is some estimate of B. This is the same
z as above when p is substituted for B. To prove that p is the m.l. estimator of 6. we
note that the m.l. estimator of 0 is the solution to

T' (c + E)-'xP : x' (c f E)-1y or
6 : [x'(c * E)-r;1-r1G * E)-ly.

When we eliminate v from (12), the following equations result
X'WXO : X'Wy, where

w : E_l_ E_'(I * EG_';_'
: E-r _ lE + EG-1El-r.

consequently we can show that the sorution to p itr (12) is m.l. if we prove
that W : (G + E)-1, or that (G + E)W : I

(G + B)W : (G + E)fn-t - (E + EG-'E)-']
: GE-l + I- (G + E)(E + EG-1E)-1 "

: GE-l + I - GE-l : I, thus completing the proof.

(12)

(1 3)
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In many applications of the above method the et s are uncorrelated and have

t
common variance d".That is, E : o2"I and E-t : 

" 
I.

0'e

Consequently, by multiplying each equation of (12) by ot" we obtain
X'XB*X'v:X'y
XB+(Ifo2"G-1),r:y.

To illustrate, Tet 21 : the record on individual, and y, and.7, : records on
parents. The mean of each2 is p. The model is the simple one of (4).
Then.

7 7),
t^2\- 2

G : h2o2,

1

1.

z
, and G-l

r57

X':(1
o2.: (1-

)

1.

z
-2 a

iduals are

1

-0
z

4
-z

Then, the equations to be solved to evaluate these three i
'v.l

I

Y, 
I

I

Yrl

I

v,l.

.l

I

nd

LL

V1

V2

1

2(1-h

E
7-h2

1

)(1-h

,W

3-h2

'1.

-2h2

zn'

r1-h2\

4

-2

['
1.

2h2

-) 
( 1_h2\

2h2

1,-h2

zn'

3-h2

2h2 zn" 2h2

i
I

"rJ

SELECTION INDEX FOR MORE THAN ONE TRAIT
The application of the selection index to selection for more than onetrait requires only a simple extension of the principres described for one trait

selection. rn fact, if we .define T properry, the techniques are exactly the same
as in single trait selection. suppose it is desired to ielect for breeding value
with respect to s different traits and we denote the breeding values of these
traits by Tr,Tu,...,Tu. The records available for use in selectiJn may be pheno_
typic observations on some or all of these traits in the candidates for seiection
or in their relatives.
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One possibilit," forrs;ng e rdnrrirl LJpr a 4c" d [fu mra
be to construct selection indqer Ic .rpdi'Ei r rlrffi effir h" -16
trait on each infiridual and then m sdct o rrair cc df ir ft fu F-tion, trait two in the second, and so on- Thir ir <elH fufuf *.frr ,t
second possibility would be to compute criteria 5, ia r-rnrtr ffi d
then to select only those with all criteria equal to or hLrhr h .f+-
minima. This is called selection by "independent culling levels-- ff. hrurs,
it is possible to assign to the traits relative economic values for increases of gE
unit, breeding value can then be defined as a weighted function of breeding
values for the various traits. Thus, if the relative values zire t)1t a2, . . . ,u", the
breeding value is defined as

J:v1Tr*...*v"Tr.
Employing this definition of T, the selection index equations, from the pro-
cedure of (l), have left members : c = the variance-covariance matrix of 1"s, ind
and the right members are elements of the N x I vector,

t : (durr dyrT .dvwr)',
where oy,r : Vldy;Tr +...+ vsdyiTs,

Let t1 : elements of vector of du,1,,
t2, : elements of vector of cyrr,,

etc.

Then, the right hand side of the selection index equations are
t : vrtr *. .. * v"t".

Consequently, the index equations are

Cb=t and
b = Q-r1

- C-1vrtr +... + C-lv"t",
and the selection index is

bT=ort.'c-ty *...+ vrt"'c-5/. (lb)
An alternative procedure that leads to exactly the same result is ro .construct
separate indexes for each trait and then to weight either these indexes or the
sets of s criteria by the economic values, that is,

I :vrlr *...* v"I".
The proof of the equivalence of these methods follows.

Ir = br'Y, where br : C-ltr,
Iz=bz'Y, where bz: C-1t2,

etc. Then,

1:v1brly *...* v"b"'y

= vrtr'C-lY +. . . + v"t*'C-ly, which is the same as (15).
This latter method has the distinct advantage that changes in relative

economic values with time or differences from one location to another do not
require construction of new indexes. For example, an extension worker who is

J
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asked to advise dairymen on selection for both type and production realizes that
the value of type relative to milk production is great for the breeder who capi-
talizes on show ring winnings by selling breeding stock but is of little or no
value to the dairyman who sells only cull cows. The extension worker can,
however, give this advice to all,

l. Evaluate animals for milk production with an index
I- = bryr *... * bnyN.

2. Evaluate the same animals for tvpe with another index
It:,Bryr *. . .* p*y".

3. Weight the above two criteria computed for each animal by
a* and ar.

The dairyman must decide for himself what values to use fot u* and ar.

SELECTION OF LINES AND LINE CROSSES

The selection index method need not be restricted to selection of indi-
viduals, for exactly the same principles can be applied to discriminating among
lines, line-crosses, or other genetic groups.

Selection of Groups for Top-Crossing
A certain number of genetic groups,

selected for top-crossing on some specified
which q individuals are selected at random
progeny of the irh individual from the ith
model is assumed:

Yrjr=gt*Pi;*ei;1, (16)
g, F, and e are normally, independently distributed with means 0 and variances
ogs, ogp, o2r. We wish to maximize progress in $ by using an index of the form,

Ii : birlir. * brr|r". -r . ..
The C mauix has according ro the model (16), the following elements:

diagonals : cze * !> nrrroro * ]- or"
n2r. j fr1.

off diagonals : o2*.

The right hand sides are all o2".

Selection of Single Crosses

A random sample of lines from some population is chosen for producing
some or all of the possible single crosses. A random sample of noo progeny from
the cross of line z by line 7 is observed. On the basis of these results a certain
number of crosses is chosen for further testing or for commercial production. A
simple criterion is the line cross mean, butif.nuo is small, this clearly is not-a very
accurate method. It seems logical to suppose that a better criterion couid be

inbred lines for example, are to be
population. A test is performed in
from the ith group and ndj top-cross
group are observed. The following
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found by using also the mean of the reciprocal cross and the data from all other
crosses in which either of the parental lines appears.

A simple model that is appropriate for some species is

Yi:t:8i*g:*si;*€i;r.
The elements of this model are normally and independently distributed with
means 0 and variances qesl d, ogu. It is assumed that reciprocal crosses are equal,
except for sampling. Consequently sai : sro. The model also assumes either that
the lines are homozygous or that only one progeny per parent is tested. The
model can be expanded to incorporate less restrictive assumptions, but it suffices
to illustrate the principles of index selection of crosses.

SelectionJor general combining abilit1,. By definition, general combining ability refers to
the relative value of the g's. Consequently Ti : g,. A simple indexing procedure to
evaluate the atlt line is I : boy" where !. is the mean of all observations on ttle ath
line, and

bo : o2uf c2eo,

6tro : o,, * (a,* + o'")l:)(""i * n,:")'l/(n". + n.o)2

I o'J(n". * n.").

If subclass numbers are unequal, a better index can be constructed by
utilizing the data on all crosses rather than just those having the cl line as a
parent. Now the index is

I":2 b;3y1;,where
i<i

j'i; : (yr;. * yii.)/(tt: 1- n;').

To compute these &'s we use equations (1) where

Diagonal element of C : 2o'" I a2u I oz.f (nt; * nii), (17)

Off-diagonal elements of C having one subscript in common : 6'*,
Off-diagonal elements of C having no subscript in common : 0, and
Right hand members : covariance between fii and ga

: 62e if one subscript of |i5 is a

: 0 if neither subscript is a.

Selection for si,ngle cross performance.In this case T is the value of a single cross,
which for the cross of s by .,, is

S.*9"*soz.
A variety of procedures all leading to the same result can be used. The problem
is quite analogous to selection for more than one trait since breeding value in
the single cross is a linear function of underlying random variables (g's and s)
while that for multiple trait selection is a linear function of breeding values
for the several traits.

One method is to use the index,
sL,--2 Ui;v ii.
i<i
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n,here r-'ij : (yij. * y:r.)i(nr: a tt;t). Then the C matrix is the same as described
abor-e, (17). The covariances for the right hand side of equations (1) when the cross

is. sar- z X y, are
Covariance with i"B: 2o2n * ozu,

with i";, Vio, lti, lir: c2*, and
with all other ii,;: 0.

This method is tedious since it requires as many solutions to the index
equations as there are crosses to be evaluated. Consequently it is desirable to use

instead the method described in an earlier section, in which y's and car's are
intelchanged.

SOLUTION TO THE SELECTION INDEX USING LEAST SQUARES
EQUATIONS THAT ARE APPROPRIATELY MODIFIED

Let the linear model for y, and N X I vector of observations be,

y:XplZu*e (18)

X is a known N x p matrix of rank p.

B is an unknown p X I vector.

Z is a known N x r pnatrix of rank r.
z is an r x I vector having a multivariate normal distribution

with means = O, and variance-covariance matrix : D, which
is a non-singular, rP matrix.

e is an N X I vector having a multivariate normal distribution
with means = O and variance-covariance matrix - R. which
is a non-singular, NP matrix.

u and e are independently distritruted.

\\'e wish to estimate B by m.1. and to use these estimators, p, in selection
inderes of the form,

tr: B'(y-XB)
il.is an r X 1 vector corresponding to zz, but this does not necessarily imply

thatfi,is an estimator of z. Rather it is a set of criteria for selection.

B is an N X r matrix computed according to the principle of selection index
construction.

-\ccording to rhe model, (18), the variance-covariance matrix of7 is A :
R + ZDZ, and the covariance between -y and u is ,(D, an N X r matrix. Con-
seqrrenrlr', the index equations arei

AB : ZD and
B : A-IZD.

Therefore, i : DZ'A-t(y - XB).
The m.l. estimator of B can be found by solving the following equations

X,A-IXp : {/f-ly or

P: (X'A-1X)-1X/A-1Y.

161

h*

\r

(1e)

(20)
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An alternative procedure that is often much easier requires setting up 1east
squares equations to solve for B and u as though el were fixed ancl then addine D-l
to the lower rz submatrix of coefficients. The following equations result. This mlthod
was suggested by Henderson (4) in 1952.

X'R-IXF + X/R*rZff : X,R-1y
Z'R-IXF + (Z'R-IZ + D-1)fl - 7'p.-tu ( 21)

we must now prove that P : p of (20) and that ff : fr of (19). To prove the for'rer,
we note that since ]n (21\

i : (z'R-12 * D-r;-r7'*-.(y _ X6), t22)
equation (21) can be reduced to

x,waif : x,wdfr?r,...
w: R-1 _R-12(Z'R-12 + D_1)_12lR_1.

Therefore, if ty': A-t, F: 0. We show that this is true by proving AW : L
AW : (R + ZDZ')lR-t - R-LZ(Z,R-IZ f D-r)-r7,B-r1

: I + TDZ'R-1 - z(z'R-12 + D r) 1Z'R-1
_ ZDZ'R-|Z(Z'R rZ f D_r)_r7rB_r

: I + ZDZ'R-L*Z(I +DZ'F(_12)(Z'F(_12 + D 1)_12lR_1
: I + ZDZTR-r _ ZD(D' I Z'F(_t71(Z'F(_t7 { D-r)_r7'B_r: I + zDZ'R-r-LDZ'R-I
:I.

In order to show that ff : ir we prove the following,
i : (Z/P.':-12 f D,r;-r7,*-'(y _ Xfi), from (22).

(Z'R-LZ * D-';-'7'*-tAA-1(y - X g)
: (z'R-12 * D-r;-r7'o-r(zDz,+ R)A-1(y _ Xg): (Z'R 12 + D-1) I(ZIFI-LZDZ, + Z,\A-r1y _ XF): (z'R-12 + D-') 1(ZtR-12 + D_I)DZIA_'(y _ x6): DZ'A_'(y _ Xg)
: o of (19).

Thus, we have proved that if least squares equations are set up uncler the
assumption that the random elements of the moclei, excepr for e, are fixecl and
then add the inverse of the variance-covariance matrix of the random elements,
we can solve directly for the m.1. estimators of the fixed. elements of the linear
model and for criteria to use in selection. In many problems this method has
distinct computational advantages over the conventional selection index methocl
and over the usual m.l. estimation (weighted least squares) of the fixed elements
of the linear model.

In most applications R is diagonal or better yet is 6upl, which greatly sim_
plifies setting up (21). Arso in some cases D also is'diagonal, in the iingre cross
example above, for instance. But if D is a large non-d.iagonal matrix, its inr-ersion
can be avoided if the foilowing equations are writtenl

x'R-1x6 + x/R-1ZDv : X'R-1y
DZ'R-1Xg + (DZ'F(-IZD + D)v : DZ'R_11..

I

;

V'



HE\DERSON: SELECTION INDEX 163

Then, p has the same value as in (21), and fi : Di has the same value as I in
1$ (21). The Proof of this is

1. Substitute D 1ir for ir in (22).

2. Pre-multiply the last equation of (22) by D-t.
3. Note that the resulting equations are identical to (21).

It is interesting to note that the lower 1"2 submatrix of the inverse of the
coefficients of the left side of (21) is the variance-covariance matrix of the deviation
of u?'s from their respective z's. That is,

v

E(A - u)(ir -,r)'.

CONSEQUENCES OF USING PARANiETER ESTIMATES
AND ASSUMING NORMALITY

Some of the unsolved problems of index selection are:

1. What are the consequences of non-normality on the efficiency of a
selection index constructed as though y and 7 have the multivariate
normal distribution when they actually have some other distribution?

2. What are the consequences of using variance and covariance esti-
mates in place of parameter values on (a) the effectiveness of selection
and (b) on prediction of genetic advance?

3. How should indexes be consructed to maximize genetic progress
when either or both of the assumptions. normalitv and known
parameters, do not hold?

The use of electronic computers, which are becoming increasingly avail-
able to plant and animal breeders, for sampling investigations of these problems
appears promising. Work along these lines is in progress at Iowa State University,
Cornell University, and probably elsewhere.

L
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