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HE selection index employed in plant and animal breeding refers usually

to a linear combination of observations that is used to compute, for each
individual available for choice, a criterion for selection. We shall call the
mathematical description of this linear function the selection index, I, and a
numerical value actually computed by an index from the observations on a
particular individual, the selection criterion. For example, suppose that the
records available on each of several dairy sires are y, = mean of 10 progeny, y, =
dam’s record. Then the index might be something like

I=.77(y1 — w) + -08(y: — o).
If, for a particular sire, y; = 450, y, = 500, w3 = 460, p, = 480, the selection
criterion for this sire would be
77(450 — 460) + .08(500 — 480) = —6.1
The selection index can be used for several different purposes, €.g.,
1. Selection on a single trait using information on the individual and
certain of its relatives (5).
Selection on two or more traits using records made by the individual
(3).
3. Selection on two or more traits using records on the individual and
its relatives.
4. Selection of line-crosses using data in addition to that on the specific
cross (4).

The first application of the selection index to plant breeding was by Smith
(7), and the first to animals by Hazel (3). An excellent brief description of the
method was given by Comstock (2). Cochran (1) presented many of the mathe-
matical and statistical problems encountered in constructing indexes.

The foregoing publications and all others on the subject, so far as I am
aware, have justified the procedure only for the case in which the information
available on each candidate for selection is the same. More precisely, the N records
and the underlying genetic value available on each individual are a random
sample from some known (N + 1)-variate population. In actual practice, at least
in animal breeding, this is seldom true. Rather, choices must be made among
animals with different amounts of information. It does turn out, as will be shown
in this paper, that the selection index procedure is in fact valid for the latter case.
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142 STATISTICAL GENETICS AND PLANT BREEDING

SELECTION INDEX FOR THE EQUAL INFORMATION CASE
N records, say yi, - - - ,Yx, ar€ available on each candidate for selection. The
breeding value of this individual is denoted by T. We shall deliberately not define

breeding value at this time, but will do so later in the paper. yi, .. -,¥w T are
assumed to have an (N + 1)-variate normal distribution with variance-covariance

matrix

Cq Ciz ... Giv 51
Cm 022 . CQN ta

Cix Cox ... Cynx I5N

Ltl ta R 5 g
or in matrix notation,
[ G gt
g
] , where Cis an N X N, non-singular matrix, ¢ is an
N X 1 vector, and g is a scalar. The »’s have means fiy, . . . sM4N-

Construction of the Index
An index is wanted of the following form

I= b1(Y1 i P-l) d= bN(YN = ,U«N)-
Of all such linear functions which one is “best” in some sense? To answer this
question we must define what we mean by best. A logical criterion would be
that one which in the long run maximizes genetic progress, see, for example,
Lush (6). Now the expected value of any particular T selected on the basis of
such an index is

E(T|1) = pr + bre(I — p1)

0TI
= pr + — I - p1).
0'21
This is the well known formula for the regression of one variable on a
second variable in the bivariate normal distribution. This is not true for other
distributions, but may be a suitable approximation. Then the mean of the T”s in
a selected group is

- - O-TI -
E(T[I) = pr + — (I —pa)s
01
: z
If selection is strictly according to the index, I — wr is equal to — o1, where z is the
q
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ordinate of the unit normal distribution at the point of truncation, and q is the
fraction of indexed individuals that is selected. Thus, the expected genetic progress
in one cycle of selection on an index is

g1 Z
—— — o1, which can be re-written as
0'21 q
7
It — 0. B
q \
. z .
Since for any given population and intensity of selection — oy is constant, the 5’s
q
of the index should be chosen so as to maximize ry;. Differentiating log rr1 = log oy
1 1
— — log o’r — — log 0% with respect to by,. . .,bx, equating the partial derivatives

to zero, and noting that
orr = boyr ...+ bxoynt
and ¢?; = El_g;“ 4 2bibeoyiy, +. . .+ biyoly

the following equations in the 4’5 are obtained:

0'21
b10—2y1 + b20'y1y-z + Ao n ])NU)'IyN = Gl —
071
0'21
blgylyz + b20_2yz + o bNU3'z§’N = Oy T ——
0TI

etc.

Since the magnitude of ¢;*/oq; does not affect the proportionality of the
b’s, it has no effect on r,; and can be chosen arbitrarily. For convenience let us
choose the value, 1. Thus we have the above equations with g2/, deleted. In
matrix notation the equations now are

Gh = t, (1)

where b is the N X 1 vector, by, b, . .. ,by, C is the variance-covariance matrix of
the y’s, and ¢ is the vector of ¢,,’s. Note that these index equations are exactly

like “normal” equations of multiple regression except that population variances
and covariances appear in place of sample sums of squares and cross-products.

Expected Genetic Progress

With the b’s determined, the expected genetic progress in one cycle of
selection by truncation of a set of selection criteria can be computed from

z
Lpnoa =

|
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rpr can be calculated conveniently by noting that

(0’ 1)? 0TI 0TI

iy = — — L ikince = = 1)
o’ 0%t ot a rz’

blo'yyr + 1o + bNUyNT

O'2T
Also, we note that the expected value of a particular T, given the selection

criterion, I,, s

Il

OTI
pip — la = ©r)
0’21

E(T|Io)
= ur + Io, since orforr = 1 and pr = 0.

Other Properties of the Selection Criterion

The selection criterion computed by the selection index has other propetr-
ties of interest in addition to maximization of 77 and of expected genetic progress.

1. E@ — T)%is minimum among all linear functions of the general form
of the selection index. That is, the average value of the squared deviations of
criteria from true breeding values is minimum. This is easy to prove by
minimizing, for variations in b,

E(I — T)? = E[bu(y1 — pr) + ...+ bxlyx — ) — T
= by20%, + 2bibaoyaye 4+ ...+ bixodyy — bigyir—- - -

i

— bxoyyr + 071
When this expression is differentiated with respect to b’s and the partial

derivatives are equated to z€ro, the equations of (1) are obtained. Note that this
property does not require the multivariate normal distribution, nor does the
property maximization of ry;. If the value of E(I — T)*is wanted for a particular
index, it can be computed either by

O'ZT — 071 — 0’2’1‘ o (b]O'le + s + bNO'yNT> or by‘

0'2'1‘(1 — I‘ZTI).
A proof of these computing formulas is,

E(I == T)l = 0’21 — 2071 + O"‘)T

= G'2T — TTT3 since 0'21 = 0711
gri
= O'2T 1 -
0’2']7
(UTI)2 0TI
= g4t 1 —— since — =1
o o

= 0'2'1‘(1 — I‘zTI).

1t is also of interest to note that
o = r’rio i

|
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The proof of this is,

(0%1)* (oT1)® (or1)?
2
ol = = = o’r = riroiy.
o2 st alr o¥
2. E(T|yy,...,yx) = the selection criterion in the multivariate normal

case. This comes directly from the well known result concerning the mean of a
conditional distribution in the multivariate normal distribution. Thus, the
average value of 7”s associated with a given set of y’s is equal to

ur + bi(yr — w) +. .4 bxl(yx — ),
where the b’s are exactly those of the selection index. Accordingly, we can state
that the selection index procedure takes as the selection criterion the average
value of all 7”s that are associated with y’s equal to those on the individual
that is a candidate for selection. Of course, this subset of T’s shows variation, but
less than the variation of 7”s in the entire population. From multivariate normal
theory, this variance is
o?p(1 — 1pp?).

3. The probability of selecting the higher of a pair of 7”s is maximized.

The proof of this is presented in the next section of this paper.

Unknown Means
What if the w's are not known? In the equal information case any arbitrary
values can be used, for it can be seen that

I=Dby(y; — pa) +- .-+ by(yy — uy)
=byy; +...4+ byyx — (biuy +. ..+ byux)-
Notice that the same function of the w’s appears in each selection criterion
and consequently has no effect on ranking. This is not the case when the
information is different from one individual to another.

SELECTION INDEX FOR THE UNEQUAL INFORMATION CASE

When two individuals have different information available for evaluating
their breeding values, it is clear that different indexes are required. But then
there is more than one ry;, and it is obvious that the justification of the selection
index method described in the preceding section no longer is valid. For example,
suppose selection is from two kinds, A and B. All individuals in the A group
have the same kind of information, and an index say I, is used to discriminate
among them; similarly for the B group, /5 is used for discrimination. Then the
expected progress through selection on the basis of these two indexes is

(NArTIAZA = NBrTIBZB)/<qANA + qBNB>,

where N, and Ny are the numbers of individuals available for selection in the
two groups, g4N4 + qpNp is the number of individuals required to be selected,
and z, and z, are ordinates of the unit normal distribution at the point of trun-
cation. Maximization of this expression appears difficult since two sets of b’s, g4,
and g must be determined. The difficulties multiply rapidly as the number of
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different groups increases. Strangely enough this problem seems not to have been
considered in previous discussions of selection.

Maximizing Probability of Selecting the Better of Two Individuals

The problem created by unequal information in the individuals con-
sidered for selection can be solved by finding 2 selection criterion which will
maximize the probability of selecting the better of any two individuals. This
method should then certainly maximize genetic progress. Suppose we have a
set of records Vi, .-y~ available for choosing between individuals A and B
with breeding values T4 and T, For example, ¥, might be the record on A,
y, the record on the dam of A, and ys, - - -5Y12 the records on 10 progeny of B.
The variance-covariance matrix of the y’s is as before, C. The covariance between
T, and the y’s is the vector, t, and between T, and the y’s is tg. T, and
T, are assumed to have the same mean and can have any variance-covariance
matrix we choose. These variables and the y’s are assumed to follow the multi-
variate normal distribution. We want two indexes, one to compute 2 selection
criterion for A and the second to compute a criterion for B.

I = bafyy — Ba) e by(yx — Wx):
Is = b (yi — wy) +..o T ba*(yy — x)-
Note that the same set of records is used for the two indexes, but some of
the b’s and b*’s may be zero.
In order to maximize the probability of selecting the better of two T’s the
following probabilities must be as large as possible.

P(IA—IB> O l TA_TB> O);
Pilg—la = O] Ty = Ig= 0).
Now for any fixed value of T, — Ty, say k, the distribution of I, — Ig, is normal
with mean
Mia — MIs -+ bIDTD(k — MTa =+ HTB);
where Ip = I, —Igand Tp = T, — Tp. This mean then simplifies to bipTok,
since prx = pz = 0 and pra = prs. The variance of this conditional distribution is
(= r’1orp) O In-
The probabilities above can be maximized if we maximize the ratio of the meanto
the standard deviation when £ is positive and minimize this ratio when & is negative.
Both of these can be accomplished if we maximize the ratio of brpro t0 the standard
deviation, that is,
bIDTD/\/(1 == rQIDTD>021D
01pTD

———/+/(1 — r’rom)

C
O1ip 0°Tp

Il

il TipTp

ooV 1 — 2 1oTo- (1a)
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1
Since —— is constant, maximization of (la) is certainly accomplished by
0Tp

maximizing riprp. But since Ip = Iy — Ipis
Ip = (b1 — bi®)y1 +...+ (bx — bx*)yn
= say 51,\'1 T e BNYX,
it is necessary now simply to solve the usual index equations (1) of the form

610-25'1 e 620'3-13“3 S8 BNUyn-N = O0yiTp = OyiTa — OyiTs,
ete.,
or in matrix notation,

@ )S = ty — tp since OyTp = OyTa — OyTs = ta— lpe
Then, 8 = C(ts — tp)
= CIVItA — CiltB. (2)

Now, suppose we compute separate indexes for evaluating A and B as
though A were to be ranked relative only to others with the same information
and B relative to others with the same information, but different from A’s. Using
equation (1), we have

C by=t, or
b, = C1t,, and
C bg=tg or
by = Cilt;.
Now note that,
by — by = Gty — Cltg,
which is exactly the same as 8, see (2). Thus, we have proved that the usual
selection index criteria are best for ranking regardless of unequal information.

Unknown Means
It was shown in an earlier section that lack of information concerning
the u's has no effect on ranking when all individuals have the same information.

This is not true, however, with unequal information. In the case above, involving
A and B,

I, —Ip = (by — by*) (y1 — o) +...+ (b — b*)(yn — ux)-
Clearly this difference, which we use in choosing between A and B, contains a
function of the w's, and if the p’s are unknown, the difference cannot be com-
puted. One way out of this difficulty is to let

I = byy; +...+ byyy rather than

bi(yr — m) +...+ bx(yxy — wx),
and then to maximize 7;; subject to the condition that E(I) = O. To illustrate,
SUPPOSE Y, Vs, y; are assumed to have a common mean, p and we want an index,

I= b1Y1 + bays + bsys,
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subject to E(1) = O. Now,
E() = E(byys + bayz + Bs¥o)
= (b1 + b2 +b3) M.
Consequently, E(I) = 0 if b, 4+ by + bg is required to equal 0. This condi-

tion must therefore be imposed on the selection index equations. Suppose the
usual equations are

20b1+ b2+ 2b3:5
T el
ob,+ 3by+30by=1.

By augmenting these equations with a Lagrange multiplier, a, as follows, maxi-
mization of 7 subject to by + by, + by =101is accomplished.

20b; + bo+ 2b;+a=>5

b1+25b2+ 3b3+a:2

2b1+ 3b2+30b3+a:1

The solution to these equations is by = 1077, b, = .0367, by, — —.0710, a =
3.0241. This is in contrast to the following solution when it is known, b, = .2455,
b, = .0690, by = .010L.

A second logical approach to the problem of unknown u’s is to use their
estimates in the regular index. In the above example, the index would be,

I = .2455(y1 — &) + -0690(y2 — ) + 0101 (ys — &)

Now it turns out that if the estimators used are those obtained by maximum
likelihood from the y’s that were employed in the index, the index is actually
the same as that derived by requiring EQ) = 0. Let us illustrate in the above
example. The maximum likelihood (m.1.) estimator of w is kyy; + koys + Ka¥a
where the k’s are the solution to the following equations:

90k, + ket 2kg+2a=0
K 425k + 3kg+a=0
9k, + 3k, +30k;+a=0
e Tt B UL S
Ve blutien i Ty = 4246, ks = S25L, Ka = 28T —9.3169.
Then, T = .2455(y; — ) + 0690(y2 — &) + 0101(v; — A)
2455 vy 4 0690 yz -+ 0101 ys — 3246 £

2455 v, + 0690 ys + 0101 y; —.3246(4246 V1 1 3257 vs
+ 2497 v3)

= 1077 y1 — 0367 yz — 0710 ¥3, :
which is exactly the same as the index which requires E(I) = 0.

i

Il
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A general proof of the equivalence of these methods follows: The records
available for evaluating an individual are the elements of an N X 1 vector, v,
with variance-covariance matrix, C, and means X8, where X is a known N X D
matrix and g is an unknown p X 1 vector. The covariance between 7" and vy is
the N x 1 vector, t.

Then the usual selection index is
b'(y — XB) = t/C(y — XpB), and if the m.l. estimators of 8 are
substituted for @ it becomes
t'Ci(y — X B).
The m.l. estimator is 8 = Ly, where L, a p X N matrix, is the solution to
CL' + XA =0
XU =T
where A is a p* Lagrange multiplier, and 7 is a p? identity matrix
(not the selection index). Solving these equations,
L = G (XICFX)E
Therefore, 8 = Ly = (X/C1X)"1X'Cly.
Then the index = t/C [y - X(X'C1X)1X'Cly]
= t/CI - X(X'CX)X'C1y. (3)
In the second method 7,; is maximized, subject to E(I) = 0. In this case b is the
solution to the following equations

Cb+Xa=d

X’b =0,
where a is a p X 1 Lagrange multiplier, and 0 is a p X 1 null vector.
Solving these equations,

b = [I — GIX(X/CIX)AX/]CHt,
and the selection index = b’X

=t'C1I - XX'CX)1X'C1]y,

as in (3), thus completing the proof.

b

SETTING UP SELECTION INDEX EQUATIONS FOR ONE TRAIT

It is apparent from the preceding sections that the selection index method
has very desirable properties at least in the multivariate normal distribution.
But it must also be recognized that, strictly speaking, these properties exist only
when the necessary population variances and covariances are known. Of course,
the C matrix, the variance-covariance matrix of y’s, can be estimated directly
from an adequately large sample from the population of y’s. In contrast, the
covariance between T and the y’s cannot always be estimated directly since 7 is
sometimes unobservable. Therefore, quantitative genetic theory is then invoked
to infer the value of such covariances. Also, on some occasions the elements of C
are inferred from a combination of data and theory, if data alone are inadequate.
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Coefficients of Left Hand Sides of Index Equations
Ideally one should like to have a very large sample from the N-variate

population represented by the y’s. Then the variance-covariance matrix can
be estimated accurately enough that there need be no concern about the
consequences of using an estimate of C rather than parameter values.
Computing C when all genetic variation is additive. In animal breeding the ele-
ments of C are sometimes estimated under the assumption that the model
underlying the record on the ith animal is

Vi= Wt g+ & )
and that on the jth animal is

Vi=w t8 + &
where p; and p; are fixed, g; and g; are additive genetic values of the two indi-
viduals, and e; and ¢; represent all other causes of variation. It is assumed that
gi» Zj» € €, follow a multivariate distribution with all covariances zero except
that between g; and g;, which is stated to be a ;0% where a;; is the numerator
of Wright's (8) coefficient of inbreeding and ¢, is the population additive genetic
variance (the initial population in case there has been inbreeding). The variance of
y; is assumed to be o?o+(1+Fi)o%, where o2, is the variance of ¢ in the original

i
population, and F; is the inbreeding coefficient of the ith individual. These
assumptions imply:
1. No selection since the period defining the initial population.
2. All genetic variance is additively genetic.
3. No covariance between additive genetic values and environmental
values and no covariance between environmental values.
Then the C matrix for computing b’s to use with single records on N individuals

18

9 .
o2y + Fio?% a120% s aINT %y
a190%, a2, + Foo?, S asN0 7,
a1N0'2g a2N0'2g 0—2}' + anig 9 (5)

where ¢,2 = o2 + o2 = variance of records in the initial population. It is some-
times convenient to write this matrix as

1 + F1h2 a12h2 ) 2111\‘}1‘2
O'Qy a12h2 q + F2h2 s 2o agxh2
: o g , (6)

where h? = heritability in the narrow sense = ¢%;/c%.

More than one record per individual. In animal breeding applications two or
more records on the same trait of an animal are sometimes used in selection.
Let us assume as an approximation that the correlation between two records on
an animal is (r + Fh?)/(1 4 Fh2?), where 7 is the correlation in the initial popula-
tion between records on the same animal. This implies a model

Yy =W F Pt gt G
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where p; + ¢€’; = e; of the model in (4); p, is permanent to the individual, its vari-
ance is ¢?,, and it is not affected by inbreeding. All elements of the model are
uncorrelated. Then,
r = (% + o%)/o%

Under these assumptions and when the y’s refer to the means of n, records in the
first individual, n, in the second, etc., the ith diagonal element of (6) is modified
to

1+ (ni—Dr

o 1T e (7)

nj

When n = 1, the diagonal element simplifies to 1 + Fh?, as it should.
Using group means. Oftentimes we wish to use the mean of some group, such
as a set of progeny or of sibs in the selection index. Under the same assumptions
as already stated in this section, the diagonal of (6) corresponding to any group,
say the ith is

1+ (ni—r
e SRR R pr = ag [y, (8)
nj
where 7; is the number of records on each member of the group,
pi is the number of individuals in the group,
F; is the inbreeding coefficient of each member of the group, and
a;» is the intra-group numerator relationship.
The off-diagonal elements of (6) remain the same as though there were
only one member in the group. This, of course implies, that every member of a
group has the same relationship to any other individual whose record is used
in the selection index. Note that when p; = 1, the expression in (8) reduces to
(7), and when n; = 1 reduces to

[1 + Fh2 4+ (p; — Dash?] /p;.

Use of Genetic Variance Components

In a population with no inbreeding and with the environment contribut-
ing nothing to covariance between records on different individuals it is easy to
express covariances between relatives’ records in terms of Wright’s coefficient of
relationship, dominance relationship, and components of genetic variance. These
genetic components are,

I. Additive: variance due to single gene effects.
Dominance: additional variance due to allelic gene pairs.
Additive x additive: additional variance due to non-allelic gene
pairs.
4. Additive X dominance: additional variance due to a single gene
and an allelic gene pair,
and so on.
In general, let o%; refer to the variance due to the interaction of i non-

©o 1o
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allelic genes and j allelic gene pairs. Given that there are g loci which contribute
to the genetic variance of a trait, the total variance is

a a
Z 2 a¥y (T = o
Then, the covariance between two related individuals, is
a a4 . - . .
> 2 aidi o%;, =i ism %)
i=0 j=0
where a is the Wright coefficient of relationship between ¢ and j, and d is the

dominance relationship between them. The dominance relationship is computed
as follows for individuals A and B.

5 C E
A B
Ip 3
1
dap = ;[aCEaDF -+ aCFaDE]- (9)
1 1
To illustrate (9), a and d for non-inbred full sibs are — and —, respectively. Thus, the
genetic contribution to their covariance is 2 4
1 1 1
— 0% + — 0% + — %3 +. ..
4 16 64
1 1 1
+ -0t + -0l + — ot +. ..
2 8 52
1 1 1
+—U220+—0221+—‘0222 A
4 16 64
(6

Little progress has been made in estimating these genetic components,
but if good estimates were available and if environmental covariances could be
eliminated, the problem of setting up C for calculation of indexes would be
completely solved for non-inbred populations. Apparently gene frequencies are
required to determine the contribution of many of the components to covariance
between relatives in inbred populations and, of course, these frequencies are
not available for genes affecting most traits of economic importance.

Right Hand Side of Index Equations

The right hand sides of the equations are oyum,...,0yxt = t and depend
obviously on our definition of 7. Three different definitions seem logical in animal
breeding applications when selection is for the individual:

1. Future production of the individual.
2. Production of progeny of the individual.
3. Production of descendants of the individual.
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(In plant breeding, selection is often among lines or line-crosses. We shall discuss
our definition of T for these cases in a later section).

Future production on the individual. If T = future production and if it is
assumed that all records on the individual have correlation, r (= repeatability),
with each other, ¢,;, = 7¢%, in a non-inbred population. If serial correlations
exist, a different ¢,, must be assumed for first with second records as compared
to first with third, etc. In any case ¢,p is always a covariance between actual
records, and consequently the problem of setting up the right hand side of the
index equations is exactly the same as that for the coefficient matrix on the left.

Progeny production. If selection for production of progeny is the main concern
of the breeder, the covariances between y and 7T are simply covariances between
records on particular relatives. For example, suppose y, is a record on the dam
of the individual considered for selection, and vy, is the mean of paternal sibs
of the individual. Then,

oy;r = covariance between grandam’s and grandprogeny’s records.

oy.r = covariance between ‘“half-aunt” and niece.
Descendants’ pmduction. If selection is for descendants, this is almost equivalent
to selection for additive genetic value, for note that in a non-inbred population
the covariances between an individual's record and its descendants’ records are

il 1 il
Progeny: — 0% -+ = 0% - — 0%0 - -
2 4 8
1 1 1
Grand progeny: — 6% + — 0% + — 0%0 +...
4 16 64
1 1 il
Great grand progeny: — g% + — 0% + —— 0% +. ..
: 8 64 512
il 1l 1
Descendant 7 generations removed: — g%y 4 — 0% +.. .+ — %o +. ..
2n 22n 2in

Thus, it is obvious that after very few generations, the coefficient of %, is over-
whelmingly large as compared to any of the other components. Consequently,
we should be primarily concerned with additive genetic value, that is we can let T
= additive genetic value. Then o7 is simply a;.0%,, where a is the relationship
between the animal with the ¢4 record and o, the animal being evaluated. Further,
we note that the value chosen for %, appearing as it does in all right hand members,
does not affect ranking, and consequently is not needed to maximize progress through
selection. If, however, we wish to estimate how much progress will, in fact, be made
we do need to know either ¢?, or 7%

If we use a;0%, as right hand sides of equations in conjunction with left
hand coefficients of the form in (6), we can then divide both sides of the equations
by ¢%, and obtain selection index equations requiring knowledge only of relationships,
inbreeding coefficients, 42, and if repeated records are used, 7.
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Then, ry; has a simple computing form,

bioxir +. .. 4+ bxoxyr
pr =

O'2T

\/b1a1a0'210 o e bNaNa(Tle

%o

= \/blala o o bNaNa

Let us illustrate these last simple procedures. We wish to construct an index based
on the individual’s record, s, and a record on each of the parents, p, ;. Then the
equations to be solved for b’s, using the simplifying assumptions are

1 I T ]
F 1 — h? — h? Fbl F h?
2 2 i
1 1
— h? 1 0 . b, = — h?
2 2
il 1
— h? 0 1 bs — h?|.
2 i el 2" |

The solution is b; = h2(2 — h?)/(2 — hY),
by = by = h*(1 — h?)/(2 - h¥), and

1 1
\/b1(1) == b2<—> Sl b3<—>

2 2
Ih?(3 = 2hY)

-

N 2 he

Ity

As a second illustration, suppose we wish to select sires on the basis of the mean
of p half-sib progeny. Then the index equations are

il
1 4 (p-1)- h?
4 1
b = — h?
p - 2
2. ph?
= )
4+ (p-Dh?
' ph?
and I'py = e

4 + (p-1)h?
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Alternative Computational Procedures
An interesting and sometimes useful varia
is the following,

tion on the selection index method

T = o G o =T YR TosDy q

where 7’s are the solution to the following equations,

O-QIY’YI + OyeYe o + OyyNYN
OyiyY1 oY . Oy VYN

It is seen that this procedure simply inter

= yi— M
= Y2 — M2
changes (yi — i) and oy, as com-

pared to the conventional procedure. The advantage of this method is that if we wish
to evaluate several individuals from the same set of records, we need to solve only
one set of equations, for note that the right hand members are y — K, and these remain

the same for all individuals to be evaluated fro
the usual method has on the right hand side oy,
to the next, as T changes.

The proof of the identity of the two me
method,

I=b(y—m
where b-is the solution to
@@= &, or
I = G
Therefore, I = (Gt iy = ©)
= ¢CH(y — W)
In the new method
I=7"
where 7 is the solution to
Cy=y—Mm
Therefore, I = [C(Y — wl't
= (y — wCt
= YOy ~ W

m that set of records. In contrast,
which changes from one individual

thods is very simple. In the usual

(10)

This is the same as (10) since a scaler is equal to its transpose.

If the w's are unknown we can substitu
hand sides of these new equations or we can
the index = y't, where v is the solution to

C'Y + Xa = Vs
le = 0,

te their m.l. estimates in the right
obtain identical results by letting

and ¢ s a p X 1 Lagrange multiplier. The solution to y is

L = C—lX(X’C-lX)—lX’]C-ly,
and the index is then /'t = t'y
— |l —CIXXC

1X)——1X_/] C—ly

= t/C[L — X(X’C—1X’)—1X’C—1]y
which is the same as (8), the procedure described for maximizing rpy subject to

EI) = 0.
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Another interesting procedure, an expansion of which is useful in prob-
lems involving line crosses and in cases with unknown w’s, will now be described.
Letyi=p+g + e = LT

We wish to rank according to g’s, their variance-covariance marrix being
G. The variance-covariance matrix of ¢’s is E, and g’s and ¢’s are uncorrelated.
Consequently, the variance-covariance matrix of y’s is (G + E), and the covariance
between y and g is G. Now it can be shown that the criteria for selection, say
Vi, ...,Vy = the vector v, are the solutions to

{d +EGLy = v —y or
v=(14+ EGH) Yy —p). (11)
"To prove that this solution is identical to the conventional one we note that the
criteria in the ordinary index procedure are
B’y, where B, an N x N matrix, is the solution to
(G+ E)B =G, or
B = (G + E)1G.
Therefore, the criteria = G'(G + E)(y — p)
= G(G + E)*(y — ), since G is symmetric.
= [(G + E)G](y — )
= (I + EG1yi(y — )
=v shown in (11).
When p = X is unknown, the following procedure yields simultaneously the m.l.
estimator of 8 and selection criteria based on maximizing 7,7 subject to E(I) = 0.
Also, the procedure is equivalent to substituting § = m.l. éstimator for B in the usual
index equation. _
& X'E-Xf + X'E-lv = X'E-ly
E7XB + (B 4+ GY)v = Ey. (12)
The last of these equations can be written
X8+ (I +EG Yy = yor

v = (I + EG™)(y — X ), where j is some estimate of 8. This is the same
v as above when § is substituted for B. To prove that § is the m.1. estimator of B, we
note that the m.l. estimator of 3 is the solution to

X' (G + Ey'Xf = X' (G + E)'yor
B = [X'(G + E)'X]"{G + E)-ly. (13)
When we eliminate v from (12), the following equations result
X'WX B = X'Wy, where
W =E*-E'(I + EG1)-!
= E!'-[E + EGE]-L
Consequently we can show that the solution to § in (12) is m.l. if we prove
that W = (G 4 E)~Y, or that (G + E)W = I
(G + E)W = (G + B}[E- - (E + EGE)]
GE™' +1-(G + E)(E + EGE)—!
= GE™' + I -~ GE™! = I, thus completing the proof.

Il

Il
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In many applications of the above method the ¢’s are uncorrelated and have

1
common variance ¢%. That is, E = ¢%I and E~! = —~ 15
[
Consequently, by multiplying each equation of (12) by o2, we obtain
X'XB+ X'v =Xy
AP + (1 + o8 Gy = v
To illustrate, let y, = the record on individual, and y, and y; = records on
parents. The mean of each y is u. The model is the simple one of (4).
Then,
X'=@1 1 1,
0% = (1 —h%a,?

F 1 17 B ]
f s = = A e
2 2
1 1
G =h%% - 1 0} and G = —2 3 1
2 2h?%a?,
1
= O =2 1 3]
| 2 £ L i
Then, the equations to be solved to evaluate these three individuals are
F3 1 il 1 7] [ u] [y.7]
4-2h? —2(1-h?)  -2(1-h?)
1 —— A1 Vi
212 2h? 2h*
—2(1-h?) 3-h? 12
e T Va Ve
2h? 2h? 2h?
—2(1-h? 1=h? 3=h>
Vs ¥Yai [«
b 2h? 2h? 2h% L L] L

SELECTION INDEX FOR MORE THAN ONE TRAIT

The application of the selection index to selection for more than one
trait requires only a simple extension of the principles described for one trait
selection. In fact, if we define T properly, the techniques are exactly the same
as in single trait selection. Suppose it is desired to select for breeding value
with respect to s different traits and we denote the breeding values of these
traits by T, Ty,...,T,. The records available for use in selection may be pheno-
typic observations on some or all of these traits in the candidates for selection
or in their relatives.



[
Ut
(¥ 4]

STATISTUCAL CEWETICS SWD PLAWT BREFT G

One possibility for using 2 selection mdex om these seweral s wow S
be to construct selection indexes for computing 2 separate e o euch
trait on each individual and then to select on it cme cnly i the S gemers-
tion, trait two in the second, and so on. This is called “ramdem™ seleciom 4
second possibility would be to compute criteria as in tandem selecsiom amd
then to select only those with all criteria equal to or higher than chosen
minima. This is called selection by “independent culling levels.” If. howeres
it is possible to assign to the traits relative economic values for increases of one
unit, breeding value can then be defined as a weighted function of breeding
values for the various traits. Thus, if the relative values are Uy Usy e e
breeding value is defined as

T =vT; +...4 v,T,

Employing this definition of T, the selection index equatlons from the pro-
cedure of (1), have left members = C = the variance-covariance matrix of y’s, and
and the right members are elements of the N x 1 vector,

t = (0yir Oyger ... OpN1),
where oyir = vioym, +. ..+ vy,
Let t; = elements of vector of oy,
ts, = elements of vector of oy .,
etc.

Then, the right hand side of the selection index equations are

t = vit; +...4 v,
Consequently, the index equations are

Cb =t and

b=C1t
=Clvity ...+ Clyt,

and the selection index is

by = vit/Cly +...4+ v,t/C. (15)
An alternative procedure that leads to exactly the same result is to construct
separate indexes for each trait and then to weight either these indexes or the
sets of s criteria by the economic values, that is,

I =viI; +...4+ v]I,

The proof of the equivalence of these methods follows.
I1 = by, where by = Cit,,
I, = b,'y, where b, = Ct,,

etc. Then,
I =vbyy +...4+ vb/y
=vity'CGly +. .. + v,t/Cly, which is the same as (15).

This latter method has the distinct advantage that changes in relative
economic values with time or differences from one location to another do not
require construction of new indexes. For example, an extension worker who is

\
1 e e
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asked to advise dairymen on selection for both type and production realizes that
the value of type relative to milk production is great for the breeder who capi-
talizes on show ring winnings by selling breeding stock but is of little or no
value to the dairyman who sells only cull cows. The extension worker can,
however, give this advice to all,
1. Evaluate animals for milk production with an index
I,=byy; +... 4+ byyx
2. Evaluate the same animals for type with another index
L=gy: +...+ Bxyx
5. Weight the above two criteria computed for each animal by
v,, and v,.

The dairyman must decide for himself what values to use for v,, and v,.

SELECTION OF LINES AND LINE CROSSES

The selection index method need not be restricted to selection of indi-
viduals, for exactly the same principles can be applied to discriminating among
lines, line-crosses, or other genetic groups.

Selection of Groups for Top-Crossing
A certain number of genetic groups, inbred lines for example, are to be

selected for top-crossing on some specified population. A test is performed in
which q individuals are selected at random from the ith group and n;; top-cross
progeny of the jih individual from the ith group are observed. The following
model is assumed:

Vi = 8 + Pij T € (16)
g, p, and ¢ are normally, independently distributed with means 0 and variances
0%y 0%y, o°. We wish to maximize progress in ¢ by using an index of the form,

I = bu¥i. + bifie, +...
The C matrix has according to the model (16), the following elements:

1 1

2 nij202p + s 029
n?% i nj,

diagonals = ¢2, +
off diagonals = ¢?,.
The right hand sides are all o

Selection of Single Crosses

A random sample of lines from some population is chosen for producing
some or all of the possible single crosses. A random sample of n;; progeny from
the cross of line ¢ by line j is observed. On the basis of these results a certain
number of crosses is chosen for further testing or for commercial production. A
simple criterion is the line cross mean, but if n,; is small, this clearly is not a very
accurate method. It seems logical to suppose that a better criterion could be
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found by using also the mean of the reciprocal cross and the data from all other
crosses in which- either of the parental lines appears.
A simple model that is appropriate for some species is

Yiek = & T 85 T S T Cixe
The elements of this model are normally and independently distributed with
means 0 and variances ¢?,, ¢%;, o%. It is assumed that reciprocal crosses are equal,
except for sampling. Consequently s;; = s;;. The model also assumes either that
the lines are homozygous or that only one progeny per parent is tested. The
model can be expanded to incorporate less restrictive assumptions, but it suffices
to illustrate the principles of index selection of crosses.

Selection for general combining ability. By definition, general combining ability refers to
the relative value of the g’s. Consequently 7; = g,. A simple indexing procedure to
evaluate the «tf line is I = b,y. where ¥, is the mean of all observations on the at/4

line, and
e
be = 0% /0%,,
2

0%, = 0% + (U2g i 0'25)[.2 (naj I nja)Q]/(na. i n.a)z
i
-+ 0% (e, - Dal:

If subclass numbers are unequal, a better index can be constructed by
utilizing the data on all crosses rather than just those having the o line as a
parent. Now the index is

I. = 2 byyi;, where

i<i
yii = (vi- + vi)/(ni + ng).
To compute these »’s we use equations (1) where

Diagonal element of C = 202, + % + o%/(ni; + nji), (17)
Off-diagonal elements of C having one subscript in common = g2,
Off-diagonal elements of C having no subscript in common = 0, and
Right hand members = covariance between ¥;; and ga

= ¢? if one subscript of ¥i; is «
= 0 if neither subscript is .

Selection for single cross performance. In this case T is the value of a single cross,
which for the cross of o by v is

8a 1 8y T Sar.
A variety of procedures all leading to the same result can be used. The problem
is quite analogous to selection for more than one trait since breeding value in
the single cross is a linear function of underlying random variables (g’s and s)
while that for multiple trait selection is a linear function of breeding values
for the several traits.
One method is to use the index,
2 by,
i<i
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where Ti; = (vi;. + vii.)/(ni; + nji). Then the C matrix is the same as described
above, (17). The covariances for the right hand side of equations (1) when the cross
is, sav a X v, are
Covariance with Ya4: 20% 4 a2,
with }=’aj, ?ia, ?ﬂv ';7172 O’zg, and
with all other §;;: 0.

This method is tedious since it requires as many solutions to the index
equations as there are crosses to be evaluated. Consequently it is desirable to use
instead the method described in an earlier section, in which y’s and ¢,,’s are
interchanged.

SOLUTION TO THE SELECTION INDEX USING LEAST SQUARES
EQUATIONS THAT ARE APPROPRIATELY MODIFIED
Let the linear model for vy, and N x 1 vector of observations be,
y =XB -+ Zu + e (18)
X is a known N X p matrix of rank p.
A is an unknown p X 1 vector.
Z is a known N X r matrix of rank r.
uis an r X 1 vector having a multivariate normal distribution
with means = O, and variance-covariance matrix = D, which
is a non-singular, r? matrix.
¢ is an N X 1 vector having a multivariate normal distribution
with means = O and variance-covariance matrix = R, which
is a non-singular, N¢ matrix.
u and e are independently distributed.
We wish to estimate 8 by m.l. and to use these estimators, §3, in selection
indexes of the form,
i = B'(y - X§)
ftis anr X 1 vector corresponding to #, but this does not necessarily imply
that 7 is an estimator of u. Rather it is a set of criteria for selection.

Bisan N X r matrix computed according to the principle of selection index
construction.

According to the model, (18), the variance-covariance matrix of y is A =
R + ZDZ, and the covariance between y and « is <D, an N X r matrix. Con-
sequently, the index equations are,

AB = ZD and
B = A7ZD.
Therefore, & = DZ/A"Y(y — X B). (19)
The m.l. estimator of 3 can be found by solving the following equations
X'A-1X 8 = X’Aly or
B = WATX) XAy, (20)
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An alternative procedure that is often much easier requires setting up least
squares equations to solve for 8 and « as though u were fixed and then adding D~
to the lower r* submatrix of coefficients. The following equations result. This method
was suggested by Henderson (4) in 1952.

X'RIXB 4+ X'R-1Z{ = X'Rly

Z’R7XB + (ZR7'Z + D)i = Z'R-y (21)
We must now prove that § = §of (20) and that & = 4 of (19). To prove the former,
we note that since in (21)

= (R TR - X5,
equation (21) can be reducedﬁ)

X'WIKF = X'WEs where

W =R*-RIZZRZ 4+ DH)Z'R*
Therefore, it W = A-1, = B. We show that this is true by proving AW = 1.

AW = (R + ZDZJ[R ~ R Z(Z'RZ L+ D2 R

=1+ ZDZ'R™ - Z(Z'R-'Z + D1)—1Z'R-1
= ZDZ'R7Z(Z'RZ + DH)-1Z/R-!
I'SFZRERT— Z(1 - DR ZY 7 R1Z - 2R
L+ ZDZ'RT — 7DD + Z'RAZWZRIZ - D) 17/R-1
I -+ ZDZ'R~" — ZDZ'R

=L

In order to show that i = i we prove the following,

i = (Z'RAZ | DY-ZR- 1y — X ), from (27).

(ZBFZ 4 IR TA A — X

(Z’R7Z + DH)"Z'RYZDZ’ 4 R)A(y — X §)

= (L' RAZ & DH-UFZR-FNT! 4 Ay — X[

(ZRPZ + DU UHRAZ -+ DDAy — X B L~
DZ'A-Y(y - X §)

@ of (19).

"Thus, we have proved that if least squares equations are set up under the
assumption that the random elements of the model, except for ¢, are fixed and
then add the inverse of the variance-covariance matrix of the random elements,
we can solve directly for the m.l. estimators of the fixed elements of the linear
model and for criteria to use in selection. In many problems this method has
distinct computational advantages over the conventional selection index method
and over the usual m.l. estimation (weighted least squares) of the fixed elements
of the linear model.

In most applications R is diagonal or better yet is o,°/, which greatly sim-
plifies setting up (21). Also in some cases D also is diagonal, in the single cross
example above, for instance. But if D is a large non-diagonal matrix, its inversion
can be avoided if the following equations are written,

X'RIX B + X'R'ZDv = X/R-y,
DZ'R7X B + (DZ'R'ZD + D)y = DZ'R-ly.

o
>
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Then, f has the same value as in (21), and @ = D¢ has the same value as @ in
(21). The proof of this is
1. Substitute D70 for ¥ in (22).
2. Pre-multiply the last equation of (22) by D~
3. Note that the resulting equations are identical to (21).
It is interesting to note that the lower 7% submatrix of the inverse of the
coeflicients of the left side of (21) is the variance-covariance matrix of the deviation
of #i’s from their respective u’s. That is,

CONSEQUENCES OF USING PARAMETER ESTIMATES
AND ASSUMING NORMALITY

Some of the unsolved problems of index selection are:

I. What are the consequences of non-normality on the efficiency of a
selection index constructed as though y and T have the multivariate
normal distribution when they actually have some other distribution?

2. What are the consequences of using variance and covariance esti-
mates in place of parameter values on (a) the effectiveness of selection
and (b) on prediction of genetic advance?

3. How should indexes be constructed to maximize genetic progress
when either or both of the assumptions, normality and known
parameters, do not hold?

The use of electronic computers, which are becoming increasingly avail-
able to plant and animal breeders, for sampling investigations of these problems
appears promising. Work along these lines is in progress at lowa State University,
Cornell University, and probably elsewhere.
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