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ABSTRACT: The term “effect” in additive genetic effect 
suggests a causal meaning. However, inferences on such 
quantities for selection purposes are normally conducted as 
a prediction task. Predictive ability is currently the most 
used criterion for comparing models and evaluating new 
methodologies, but it is insufficient to evaluate if predictors 
identify causal effects. Therefore, the usual approach to 
infer genetic effects seems to contradict the label of the 
quantity inferred. Here we investigate if genomic predictors 
for selection should be treated as standard predictors from 
regression models, or if they must reflect a causal effect, 
asking for causal inference approaches. We demonstrate 
that selection requires learning causal genetic effects. 
However, genomic predictors may reflect non-causal signal, 
providing good predictions but poorly representing true 
genetic effects. Genomic selection models should be 
constructed aiming primarily for identifiability of causal 
genetic effects, not for predictive ability. 
Keywords: causal inference; genomic selection; model 
comparison; prediction 
 

Introduction 
Inference of additive genetic effects by fitting 

predictors based on genomic (or pedigree) information is 
pivotal for selection and animal breeding. The meaning of 
these additive effects is expressed in quantitative genetics 
mostly using causal terms, e.g., “influence”, “causes of 
variability” and so forth, as in Falconer (1989) or Lynch 
and Walsh (1998). The term “effect” by itself suggests a 
causal connotation. This indicates that inferring additive 
genetic effects from field data pertains to the realm of 
causal inference from observational (i.e., non-experimental) 
data.  In animal breeding, however, this inference is 
commonly conducted as part of a prediction problem. 
Hence, predictive ability is treated as the main criterion to 
compare models and to evaluate novel methods and 
technologies. This learning approach is insufficient for 
drawing causal conclusions, which seems to contradict the 
original meaning of the quantity inferred. Furthermore, 
discussion on challenges involved in identifying causal 
effects and the concepts necessary for this discussion (Pearl 
(2000)) are virtually absent in genomic selection literature.      

This inconsistency casts doubt whether inferring 
additive genetic effects should be conducted customarily as 
a prediction task or as inference of causal information like 
suggested by the label. Solving this issue is important 
because the approach needed to tackle one type of problem 
is not suitable to tackle the other type. They involve 
different concepts, learning methods, and assumptions. 
Ignoring this issue may lead to poor modeling choices and 
wrong conclusions.  

Here we investigate if genomic predictors should 
be treated as standard predictors in some regression analysis 

or if they should reflect a causal effect to be useful for 
selection. Solving this issue is necessary to decide if 
genomic selection models should be constructed aiming 
primarily for maximum predictive ability or for 
identifiability of causal genetic effects. 

 
Materials and Methods 

Graph-theoretic terminology. Directed Acyclic 
Graphs (DAGs) are commonly used to qualitatively express 
causal relationships and assumptions among a set of 
variables. In such graphs (e.g., Figure 1a), nodes represent 
variables and arrows represent direct causal connections. 
One crucial aspect is how to translate the causal 
information in DAGs into conditional dependencies and 
independencies (i.e., into statistical information) which 
could be exploited for prediction. Paths in the graph may 
allow transmission of dependence between its extremities 
(e.g. d←a→c, a→d→e), unless they include one or more 
colliders (nodes with both arrows pointing towards them, 
such as c in d←a→c←b). While colliders block the flow of 
dependence and non-colliders allow it, conditioning 
reverses this feature: conditioning on non-colliders blocks 
the flow of dependence and conditioning on colliders 
allows it.     

 
Figure 1 – Directed acyclic graphs. 
 

 
Prediction and causal inference. The tasks of 

predicting a variable y from another variable x and inferring 
the effect of x on y are different. The former involves a 
function that allows predicting a value for y if a specific 
value for x was OBSERVED. A joint distribution involving 
both variables is sufficient to derive such function (e.g. 
( )|E y x ). 

Alternatively, inferring a causal effect involves 
learning about how y is expected to change if x is SET to 
some value through external interventions (Pearl (2000)). 
Unlike for prediction, joint distributions are not sufficient to 
derive causal information. For example, any joint 
distribution where x and y present some association are 
compatible with the following hypotheses: a) x affects y 



(x→y), b) x and y are affected by a third (possibly 
unmeasured) variable (x←z→y), and c) a combination of a) 
and b). 

As joint distributions are sufficient to obtain 
predictors but not causal effects, identifying the latter from 
evidence requires extra (causal) assumptions that cannot be 
deduced from this distribution. These assumptions can be 
expressed by a causal DAG involving x and y. The DAG is 
then used to deduce which identifiable function of data (or 
of the joint distribution) represents the target effect. For 
example, omitting from the DAG disturbance terms that 
independently affect each variable, the effect of x on y 
could be obtained from fitting i i iy x eµ β= + +  simply by 
assuming x→y. According to the assumed DAG, the target 
effect is the only source of association between the pair of 
variables. On the other hand, if the causal relationship 
assumed involved a common influence from a third variable 
z (Figure 1b), then a second source contributes to the 
marginal association. As this is the association explored by 
the model above, the target effect cannot be identified from 
it. However, the effect could be identified from β̂ after 
fitting i i i iy x z eµ β α= + + +  as it captures the association 
between x and y conditionally on z, which blocks the 
confounding due to x←z→y. Alternatively, if z is assumed 
to be affected by both x and y (Figure 1c), then fitting 

i i i iy x z eµ β α= + + +  would not identify the effect because 
conditioning on z “activates” x→z←y, which would also 
contribute to β̂ , confounding it. However, the target effect 
could be identified from i i iy x eµ β= + + , as x→z←y is 
marginally blocked. 

Notice that inferring effects is different from 
obtaining predictions. The criterion used to choose models 
for causal inference disregards predictive ability. Actually, 
models deemed as unsuitable for causal learning in the 
examples above could provide the best predictions. Clear 
examples are scenarios where associations due to 
confounding paths are more significant than those from the 
causal paths. Notice also that inferences can only be called 
causal effects if coupled with causal assumptions that 
support their identifiability from data or joint distribution.  

Simulation. Results of this study were illustrated 
with simulations. Whole-genome genotypes were simulated 
for 2000 individuals, consisting of 4 chromosomes with 1 
Morgan each, 15 QTL per chromosome and 5 markers 
between consecutive pairs of QTL. Simulation scenarios 
involved different effects from genotypes on one or two 
phenotypic traits, and also different causal relationships 
between them. For each scenario, two alternative GBLUP 
models were fitted using BLR (de los Campos (2013)) for 
one of the traits. One of them (model C) included as a 
covariate either a second simulated phenotypic trait or an 
environmental variable, while the other (model IC) ignored 
such covariates. Model C emulated genomic selection 
models that “correct for” traits (e.g., an analysis for somatic 
cell count that corrects for milk production, or one of age at 
first calving that corrects for body weight), or systematic 
environmental effects (e.g. farm, season). 10-fold cross 
validation tests were applied to compare models’ predictive 

ability as well as the ability to identify the true genetic 
effect. 

 
Results and Discussion 

Selection. The basic structure involved in 
selection as generally described in quantitative genetics can 
be depicted as in Figure 2, where G is a genotype associated 
with a phenotype y. Also, consider G’ as an individual 
genotype of the next generation, which is causally affected 
by the genotype of the parent G. G’ and the phenotype y’ 
are related as G and y, but the nature of such relationship is 
left unspecified at this point (Figure 2a).  

 
Figure 2 – Causal structures representing the selection 
context. The nodes G and G’ represent genotypes, and the 
latter is assigned to a descendant of the former; y and y’ are 
phenotypes assigned to each individual; arrows represent 
causal effects, bidirected arrows represent confounding 
paths and undirected edges represent unresolved causal 
relationships. 

 
Selection involves actions to modify G’ under the 

expectation that y’ can improve from that. This implies that 
selection relies on a causal effect from G’ to y’ (e.g. Figure 
2b). Even if the relationship between G (G’) and y (y’) was 
more complex, with extra sources of associations (e.g., a 
confounding source of covariance between genotype and 
environmental causal factors, as in Figure 2c), the response 
to selection depends only on the causal effect from G´ to y´. 
On the other hand, any signals between G and y could be 
explored for genomic prediction, even if devoid of genetic 
effects (e.g. Figure 2d), or negatively associated with the 
causal signal. Since response depends on the effect of G’ on 
y’, and G’ receives alleles from G, the pivotal task for 
selection is not to predict y from G or to identify individual 
G‘s associated with the best y’s, but to study the effect of G 
on y and identify individuals whose genotypes produce the 
best effects on y. 

Simulation. Simulations confirmed that good 
genomic predictions can exploit non-causal signals. The 
best predictors may be poor indicators of the true genetic 
effects, while genomic predictors with less predictive 
ability can represent the true effect more accurately. 
Considering that the relevant information for selection is 
the causal genetic effect, results illustrate that the task 
required for selection is not essentially a prediction 
problem. Therefore, cross validation and similar criteria are 
not sufficient to evaluate and compare models for selection. 
Maybe the clearest simulation scenario that demonstrates 
this distinction involves a non-heritable trait 2y  that affects 
a heritable trait 1y  (i.e. 2 1y y G→ ← ). Assuming that the 
goal is analyzing 2y , the model that includes 1y  as a 



covariate (model C) provided reasonable genomic 
predictive ability and, therefore, suggested variability of 
“genetic effects”, although 2y  is not even heritable. On the 
other hand, model IC provided extremely poor predictions. 
However, model IC is the one that provides the relevant 
information for selection: genetics does not affect 2y , 
which would not respond to selection. On the other hand, 
results from model C suggest it would respond to selection. 
The reason for this “artifact” is that including 1y  as a 
covariate makes the genomic predictors capture the 
association between G and 2y  conditionally on 1y , which is 
actually affected by both G and 2y  (i.e., 1y  is a collider). 
This creates a non-causal association that could be explored 
for prediction, but that is not relevant for selection. We also 
explored scenarios where both traits are affected by the G, 
where 1y  is the target trait instead of 2y , and where the 
phenotypic trait is affected by an environmental effect 
which is associated with G. For all of these, predictive 
ability was not a good criterion to choose models that better 
identified true genetic effects. More details on this study are 
given by Valente et al. (2013). 

These simulations were used as exempla contraria, 
so it is not implied that cross-validation tests always points 
to the wrong model. It shows, however, that ability to 
predict is not sufficient to claim that a model or predictor is 
good for selection purposes.       

Discussion. As selection requires learning causal 
effects, inferring breeding values should be done in the 
framework of causal inference. As for any task of this kind, 
one should make causal assumptions regarding the involved 
variables, and verify if the relevant effects are identifiable 
from fitting a candidate model, according to these 
assumptions. This extra requirement may seem a 
disadvantage if compared with predictive methodologies. 
But if causal information is required, such assumptions are 
necessary anyway. Ignoring this and choosing models based 
on predictive ability or goodness-of-fit is theoretically 
inadequate and may lead to poor modelling choices.  

Additionally, causal assumptions for model 
constructions are not necessarily difficult to accept. In the 
example described, as the goal is to infer the total effect of 
G on 2y , then simply assuming 1y  as heritable is sufficient 
for choosing to remove it from the model. Under this 
condition, including 1y  could either create a non-causal 
signal between G and 2y  or block part of the target effect 
depending on how the variables are related. A formal 
criterion to choose covariates for causal inference is the 
back-door criterion (Pearl (2000)). Given reasonable 
assumptions, this criterion would indicate which models 
identify better the true genetic effects in the simulations 
(Valente et al. (2013)). 

Notice that here the main goal is not to present an 
alternative way of constructing and comparing models, or a 
new interpretation of genomic predictors. Results came 
from using causal DAGs to investigate classical 
quantitative genetics concepts involved in selection. They 
suggest that the relevance of genomic predictors for 
selection depends primarily on how well they represent the 

causal effect of G on y, and not on its predictive ability. 
First and foremost, a signal between genotype and 
phenotype should be declared as causal, which requires 
causal assumptions. Only then, alternatives for modeling 
this signal can be compared via predictive ability, provided 
that none of them contradict the causal assumptions.  

Causal assumptions are necessary even to support 
standard interpretations of model parameters. That is the 
case, for example, if one wants to preserve the standard 
interpretation of heritability estimates, or to use genetic 
covariances to assess indirect responses to selection. 
Detached from the causal assumptions, what we call 
heritability is nothing more than a regularization parameter.  

 
Conclusion 

Fitting predictors from mixed models and genomic 
selection models for selection purposes is a causal inference 
task from non-experimental data. Such use of the 
predictors, as well as standard interpretations of the 
parameters of a model (genetic variance, heritability, 
genetic covariance and so forth) depend on causal 
interpretation of the results, as well as on modeling 
practices from causal inference, with explicit causal 
assumptions and model constructed aiming for causal 
identifiability of genetic effects. 
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