> # response > y <- c(4.5,2.9,3.9,3.5,5.0) > > # pedigree > s <- c(0,0,0,1,3,1,4,3) > d <- c(0,0,0,0,2,2,5,6) > Ainv <- quass(s,d) > > # X matrix > X <- matrix(c(1,0,0,1,1,0,1,1,0,0), nrow=5, ncol=2) > X [,1] [,2] [1,] 1 0 [2,] 0 1 [3,] 0 1 [4,] 1 0 [5,] 1 0 > # Z matrix > z1 <- matrix(0, ncol=3, nrow=5) > z2 <- matrix(c(1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1), ncol=5) > Z <- cbind(z1,z2) > Z [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [1,] 0 0 0 1 0 0 0 0 [2,] 0 0 0 0 1 0 0 0 [3,] 0 0 0 0 0 1 0 0 [4,] 0 0 0 0 0 0 1 0 [5,] 0 0 0 0 0 0 0 1Set the initials of B (b and u) to zero, the environmental variance to 40, the additive genetic variance to 20 and assume "naive" ignorance improper priors for the variance components such that ve = va = 0 and s2e = s2e = 0
> inits <- c(0,0,0,0,0,0,0,0,0,0) > varE <- 40 > varA <- 20 > ve <- 0 > va <- 0 > s2e <- 0 > s2a <- 0Further, allow 2000 "burnin" samples. Then collect 5000 samples after the burnin period. Define the disp option as TRUE.
> burnin <- 2000 > N <- 5000 > disp <- TRUE
> myGibbs(Ainv, y, X, Z, N, burnin, inits, varE, varA, ve, va, s2e, s2a, disp) iteration 1 varA 27.90349 varE 9.830295 iteration 2 varA 27.62676 varE 6.469905 iteration 3 varA 3.537537 varE 1.264450 . . . snip . . . iteration 6998 varA 0.08454485 varE 0.2756133 iteration 6999 varA 0.3397200 varE 0.5079951 iteration 7000 varA 0.6410488 varE 0.336344 $`Solutions` [1] 4.42481745 3.46324977 0.04799799 -0.07124684 -0.06597394 -0.05571167 [7] -0.23979331 0.11705991 -0.30874805 0.12379153 $`Variance Components` [1] 1.269034 2.032178Solutions[1] and Solutionss[2] are sex effects. Prediction[3] through Prediction[10] are predicted breeding values. The first variance component is an estimate of the additive genetic variance and the second one is an estimate of the envirommental variance.