> DIM <- c(4,38,72,106,140,174,208,242,276,310) > order <- 4 > stdtime(DIM, order) [,1] [,2] [,3] [,4] [,5] [1,] 1 -1.0000000 1.00000000 -1.000000000 1.0000000000 [2,] 1 -0.7777778 0.60493827 -0.470507545 0.3659503125 [3,] 1 -0.5555556 0.30864198 -0.171467764 0.0952598689 [4,] 1 -0.3333333 0.11111111 -0.037037037 0.0123456790 [5,] 1 -0.1111111 0.01234568 -0.001371742 0.0001524158 [6,] 1 0.1111111 0.01234568 0.001371742 0.0001524158 [7,] 1 0.3333333 0.11111111 0.037037037 0.0123456790 [8,] 1 0.5555556 0.30864198 0.171467764 0.0952598689 [9,] 1 0.7777778 0.60493827 0.470507545 0.3659503125 [10,] 1 1.0000000 1.00000000 1.000000000 1.0000000000
> legendre(4, gengler=FALSE) [,1] [,2] [,3] [,4] [,5] [1,] 0.7071068 0.000000 0.000000 0.000000 0.000000 [2,] 0.0000000 1.224745 0.000000 0.000000 0.000000 [3,] -0.7905694 0.000000 2.371708 0.000000 0.000000 [4,] 0.0000000 -2.806243 0.000000 4.677072 0.000000 [5,] 0.7954951 0.000000 -7.954951 0.000000 9.280777 > legendre(4, gengler=TRUE) [,1] [,2] [,3] [,4] [,5] [1,] 1.000000 0.000000 0.000000 0.000000 0.000 [2,] 0.000000 1.732051 0.000000 0.000000 0.000 [3,] -1.118034 0.000000 3.354102 0.000000 0.000 [4,] 0.000000 -3.968627 0.000000 6.614378 0.000 [5,] 1.125000 0.000000 -11.250000 0.000000 13.125The first row is the constant coefficient. The second row is the 1st order polynomial. The third row is the 2nd order polynomial, and so on.
> DIM <- c(4,38,72,106,140,174,208,242,276,310) > order <- 4 > M <- stdtime(DIM, order) > Lambda <- legendre(order, gengler=FALSE) > Phi <- M%*%t(Lambda) > Phi [,1] [,2] [,3] [,4] [,5] [1,] 0.7071068 -1.2247449 1.5811388 -1.87082869 2.12132034 [2,] 0.7071068 -0.9525793 0.6441677 -0.01796406 -0.62045629 [3,] 0.7071068 -0.6804138 -0.0585607 0.75705688 -0.77565120 [4,] 0.7071068 -0.4082483 -0.5270463 0.76218947 0.02618914 [5,] 0.7071068 -0.1360828 -0.7612891 0.30538905 0.69870039 [6,] 0.7071068 0.1360828 -0.7612891 -0.30538905 0.69870039 [7,] 0.7071068 0.4082483 -0.5270463 -0.76218947 0.02618914 [8,] 0.7071068 0.6804138 -0.0585607 -0.75705688 -0.77565120 [9,] 0.7071068 0.9525793 0.6441677 0.01796406 -0.62045629 [10,] 0.7071068 1.2247449 1.5811388 1.87082869 2.12132034