Genomic BLUP
Overview
We will learn how to connect phenotypes and genomics using genomic best linear unbiased prediction (GBLUP).
Load R objects
Use the function read_excel
in the readxl
package to read the pedigree file (Simdata.xlsx) in a data frame format. Use the function load()
to load the SNP matrix (W.Rda), the numerator relationship matrix (A.Rda) and the results from pedigree-based BLUP (day17.Rda) we created in class.
library(readxl)
dat <- read_excel(file.choose())
dim(dat)
head(dat)
load(file.choose()) # A.Rda
dim(A)
load(file.choose()) # W.Rda
dim(W)
load(file.choose()) # day17.Rda
Statistical model
The statistical model we will fit is given by \[ \mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{Z}\mathbf{u} + \mathbf{e}, \] where \(\mathbf{y}\) is the vector of birth weights, \(\mathbf{X}\) and \(\mathbf{Z}\) are incident matrices for fixed and random effects, respectively, \(\mathbf{b}\) is the vector of regression coefficients for fixed effects, \(\mathbf{u}\) is the vector of regression coefficients for random genetic values, and \(\mathbf{e}\) is the vector of residuals. Recall that BLUP of \(\mathbf{u}\) is given by Henderson (1975) (doi: 10.2307/2529430) \[ \begin{align*} BLUP(\mathbf{u}) &= E(\mathbf{u} | \mathbf{y}) \\ &= Cov(\mathbf{u}, \mathbf{y}') Var(\mathbf{y})^{-1} [\mathbf{y} - E(\mathbf{y})] \\ &= \mathbf{G}\sigma^2_{G} \mathbf{Z}'\mathbf{V}^{-1}(\mathbf{y} - \mathbf{X}\hat{\mathbf{b}}), \end{align*} \] where \[ \begin{align*} \mathbf{V} &= Var(\mathbf{y}) \\ &= \mathbf{Z}\mathbf{G}\sigma^2_G\mathbf{Z}' + \mathbf{I}\sigma^2_e \end{align*} \]
We predict genomic estimated breeding values (GEBV) or genetic values \(\hat{\mathbf{u}}\) in the following two steps.
- fit OLS to estimate fixed effects (\(\hat{\mathbf{b}}\))
- fit BLUP to obtain GEBV (\(\hat{\mathbf{u}}\)) condition on the estimated \(\hat{\mathbf{b}}\)
Later we will discuss how to obtain \(\hat{\mathbf{b}}\) and \(\hat{\mathbf{u}}\) simultaneously.
Computing a genomic relationship matrix (G)
We will compute the \(\mathbf{G}\) matrix defined by VanRaden (2008). The function computeG()
accepts two arguments: 1) a genotype matrix and 2) a cutoff point for minor allele frequency (MAF).
computeG <- function(W, maf) {
p <- colMeans(W)/2
maf2 <- pmin(p, 1 - p)
index <- which(maf2 < maf)
W2 <- W[, -index]
p2 <- p[-index]
Wc <- scale(W2, center = TRUE, scale = FALSE)
G <- tcrossprod(Wc)/(2 * sum(p2 * (1 - p2)))
return(G)
}
G <- computeG(W, maf = 0.05)
dim(G)
Exercise 1
Create a boxplot comparing elements of the numerator relationship matrix and geomic relationship matrix. What is the correlation between the pedigree relationships and geomic relationships?
Exercise 2
Repeat Exercise 1 by changing the MAF threshold equal to 0.1. Also, what is the correlation between the two \(\mathbf{G}\) matrices?
Incidence matrix X
We will now contruct each component one by one. First we will create the incidence matrix \(\mathbf{X}\). We first subset the variable dat
by age of dams and sex of calves, and create a new variable dat2
. The model.matrix()
function returns the incidence matrix \(X\).
dat2 <- dat[, c("AgeDam", "Sex")]
head(dat2)
X <- model.matrix(~dat2$AgeDam + dat2$Sex)
dim(X)
head(X)
tail(X)
Incidence matrix Z
Next we will create the incidence matrix \(\mathbf{Z}\).
Z <- diag(nrow(G))
dim(Z)
diag(Z)
Incidence matrix I
The third incidence matrix we create is \(\mathbf{I}\).
I <- diag(nrow(G))
dim(I)
diag(I)
Variance components estimation using the regress package
The regress()
function in the regress package fits a liner mixed model and estimate variance components (\(\sigma^2_G\) and \(\sigma^2_e\)) through a restricted maximum likelihood (REML). The variance-covariance structure of \(\mathbf{u}\) is given by the genomic relationship matrix \(\mathbf{G}\).
install.packages("regress")
library(regress)
`?`(regress)
y <- dat$BW_205d
varcomp <- regress(y ~ -1 + X, ~G)
summary(varcomp)
varcomp$sigma
sigma2G <- varcomp$sigma[1] # additive genetic variance
sigma2G
sigma2e <- varcomp$sigma[2] # residual variance
sigma2e
Exercise 3
What is the estimate of genomic heritability? Compare the estimate with the one we obtained from the pedigree relationship matrix.
Inverse of V
Here we compute the inverse of \(V\) matrix. We will use 1) the multiplication operator %*%
and 2) the function solve()
to obtain the inverse of matrix.
V <- Z %*% G %*% t(Z) * sigma2G + I * sigma2e
dim(V)
Vinv <- solve(V)
dim(Vinv)
Ordinary least squares
We will use the lm()
function to fit OLS and estimate fixed effect coefficients. This function offers an intuitive formula syntax. The summary()
function summarizes a model fit.
fit <- lm(BW_205d ~ AgeDam + factor(Sex), data = dat)
summary(fit)
residuals(fit)
GBLUP of genetic values
Now we compute GEBV (\(\hat{\mathbf{u}}\)).
uhatG <- sigma2G * G %*% t(Z) %*% Vinv %*% (matrix(y) - matrix(predict(fit)))
uhatG2 <- sigma2G * G %*% t(Z) %*% Vinv %*% (matrix(y) - matrix(X %*% fit$coefficients)) # alternative
table(uhatG == uhatG2)
head(uhatG)
tail(uhatG)
Let’s plot a histogram of GEBV.
hist(uhatG, col = "lightblue", main = "Histogram", xlab = "Genomic estimated breeding values")
Exercise 4
Create a scatter plot of GEBV vs. observed values. Interpret the result.
Exercise 5
Which individual has the highest GEBV? Which individual has the lowest GEBV? Use the which.max()
and which.min()
functions.
Exercise 6
Rank animals based on their GEBV. Show the top six animal IDs and their GEBV. Use the order()
function.
Exercise 7
Create a scatter plot of EBV vs. GEBV. Compute Spearman’s rank correlation coefficient.
Save as R objects
save(uhatG, h2G, sigma2G, file = "day18.Rda")
save(G, file = "G.Rda")